Object Oriented Programming
via Fortran 90/95

Ed Akin

Rice University
Mechanical Engineering and Materials Science Department
Houston, Texas

May 29, 2001

Draft # 4.2, Copyrigh©2001, All rights reserved.

Contents

Preface Vi
1 Program Design 1
1.1. Introduction. e 1
1.2. Problem Definition. 3
1.3. ModularProgramDesign e 6
1.4. Program COmMpoSItion 9
1.41. CommeNntS e e e 9
1.42. Statements e e 9
1.4.3. FlowControl e 11
1.4.4. FUNCLONS 13
1.45. Modules e 15
1.4.6. Dynamic Memory Management 15
1.5. Programevaluationandtesting 15
1.6. Programdocumentation. e 17
1.7. Object Oriented Formulations 18
1.8. EXEICISES . . . o v v i 21
2 Data Types 23
2.1, IntrinSICTYPES o o o e e e 23
2.2. UserDefinedData TypeS o v i i i e e e e e 25
2.3. AbstractData Types i 27
24, ClaSSES . . . o e 29
2.5, EXErCISES e e 31
3 Object Oriented Programming Concepts 33
3.1, Introduction. 33
3.2. Encapsulation, Inheritance, and Polymorphism 34
3.2.1. Example Date, Person, and StudentClasses 37
3.3. Object Oriented Numerical Calculations 38
3.3.1. ARational Number Class and Operator Overloading 39
3.4, DISCUSSION o o o e 42
3.5, EXErCISES o e 48
4 Features of Programming Languages 51
4.1, COMMENIS e e e e e 51
4.2. Statementsand EXPressions. e e 52
4.3. Flow Control e 57
4.3.1. EXplicitLoops e 58
4.3.2. ImpliedLoops 60
4.3.3. Conditionals 61
4.4, Subprograms e 68

©2001 J.E. Akin i

4.4.1. Functionsand Subroutines 68

4.4.2. GlobalVariables 72
4.4.3. BitFunctions 74
4.4.4. ExceptionControls e 74
4.5. Interface Prototype 75
4.6. Charactersand Strings 76
4.7. UserDefinedDataTypes o i i e 80
4.7.1. OverloadingOperators e 84
4.7.2. UserDefinedOperators. i i it 86
4.8. Pointersand Targets 86
4.8.1. Pointer Type Declaration o 87
4.8.2. Pointer Assignment 88
4.8.3. Using Pointersin Expressions oo 88
4.8.4. Pointersand LinkedLists. o 88
4.9. Accessing External Source Filesand Functions 89
4.10. Procedural Applications. 90
4.10.1. Fitting CurvestoData 90
4.10.2. SOrtiNg e 92
411, EXEICISES . . . v v o i e e e e 99
5 Object Oriented Methods 103
5.1. Introduction L 103
5.2. TheDrillClass e 103
5.3. Global Positioning Satellite Distances. 106
B4, EXEICISES . . . v i i e e e 118
6 Inheritance and Polymorphism 119
6.1. Introduction L 119
6.2. Example Applications of Inheritance, 121
6.2.1. TheProfessorClass. i 121
6.2.2. The Employee and ManagerClasses 121
6.3. Polymorphism. e 124
6.3.1. Templates e e e 125
6.3.2. Subtyping Objects (Dynamic Dispatching) 130
6.4. EXEICISES i e e e 133
7 OO Data Structures 135
7.1. DataStructures e e 135
7.2, Stacks e 135
7.3. QUBUEBS o e e 139
7.4, Linked LiSts 142
7.4.1. SinglyLinkedLists e 142
7.4.2. DoublyLinkedLists 148
7.5. Direct(Random)AccessFiles e 149
7.6. EXEICISES o 153
8 Arrays and Matrices 155
8.1. Subscripted Variables: Arrays 155
8.1.1. Initializing Array Elements. oo 158
8.1.2. IntrinsicArray Functions 159
8.1.3. Colon Operations on Arrays (Subscript Triplet) 159
8.1.4. ArrayLogical MaskOperators, 163
8.1.5. UserDefinedOperators. 165
8.1.6. Connectivity Lists and Vector Subscripts oL 166

©2001 J.E. Akin iv

8.1.7. ComponentGatherandScatter... 168

8.2. MALtriCeS e e 170
8.2.1. MatrixAlgebra 172
8.2.2. Inversion e 174
8.2.3. Factorizations 174
8.2.4. DeterminantofaMatrix oo 175
8.25. MatrixCalculus. e 176
8.2.6. ComputationwithMatrices 176
8.3. EXErCISeS e 178
9 Advanced Topics 181
9.1. Templates e e e e 181
9.2. Subtyping Objects (Dynamic Dispatching) 183
9.3. Non-standard Features e 184
A Bibliography 187
B Fortran 90 Overview 191
B.1. ListofLanguageTables. 191
B.2. Alphabetical Table of Fortran 90 Intrinsic Routines 17
B.3. Syntax of Fortran 90 Statements 29
C Selected Exercise Solutions 47
C.1. Problem 1.8.1: Checking trigonometricidentities a7
C.2. Problem 1.8.2: Newton-Raphsonalgorithm 47
C.3. Problem1.8.3: Gameoflife 48
C.4. Problem2.5.1: Conversionfactors, 49
C.5. Problem3.5.3: Creatingavectorclass 50
C.6. Problem3.5.4: Creatingasparsevectorclass 56
C.7. Problem4.11.1: Countthe linesin anexternalfile 61
C.8. Problem4.11.3: Computing CPU timeuseage 62
C.9. Problem4.11.4: Convertingastringtouppercase. 62
C.10.Problem 4.11.8: Read two values from each line of an externalfile 63
C.11.Problem 4.11.14 ;. Twoline leastsquarefits 63
C.12.Problem 4.11.15 : Find the next available fileunit 65
C.13.Problem 5.4.4 : Polymorphic interface for the class ‘Positingle’ 66
C.14.Problem 6.4.1 : Using a function with the same nameintwoclasses 67
C.15.Problem 6.4.3 ;. Revising the employee-managerclasses 67
D Companion C++ Examples 69
D.1. Introduction. e 69
E Glossary of Object Oriented Terms 77
F Subject Index 0
G Program Index 1

©2001 J.E. Akin v

Vi

Preface

There has been an explosion of interest in, and books on object-oriented programming (OOP). Why have
yet another book on the subject? In the past a basic education was said to master the three r's: reading,
riting, and 'rithmetic. Today a sound education in engineering programming leads to producing code that
satisfy the four r's: readability, reusability, reliability, and really-efficient. While some object-oriented
programming languages have some of these abilities Fortran 90/95 offers all of them for engineering
applications. Thus this book is intended to take a different tack by using the Fortran 90/95 language as its
main OOP tool. With more than one hundred pure and hybrid object-oriented languages available, one
must be selective in deciding which ones merit the effort of learning to utilize them. There are millions
of Fortran programmers, so it is logical to present the hybrid object-oriented features of Fortran 90/95 to
them to update and expand their programming skills. This work provides an introduction to Fortran 90
as well as to object-oriented programming concepts. Even with the current release (Fortran 95) we will
demonstrate that Fortran offers essentially all of the tools recommended for object-oriented programming
techniques. It is expected that Fortran 200X will offer additional object-oriented capabilities, such as
declaring "extensible” (or virtual) functions. Thus, it is expected that the tools learned here will be of
value far into the future.

It is commonly agreed that the two decades old F77 standard for the language was missing several
useful and important concepts of computer science that evolved and were made popular after its release,
but it also had a large number of powerful and useful features. The following F90 standard included
a large number of improvements that have often been overlooked by many programmers. It is fully
compatible with all old F77 standard code, but it declared several features of that standard as obsolete.
That was done to encourage programmers to learn better methods, even though the standard still supports
those now obsolete language constructs. The F90 standards committee broughtinto the language most of
the best features of other more recent languages like Ada, C, C++, Eiffel, etc. Those additions included in
part: structures, dynamic memory management, recursion, pointers (references), and abstract data types
along with their supporting tools of encapsulation, inheritance, and the overloading of operators and
routines. Equally important for those involved in numerical analysis the F90 standard added several new
features for efficient array operations that are very similar to those of the popuatarAd environment.

Most of those features include additional options to employ logical filters on arrays. All of the new array
features were intended for use on vector or parallel computers and allow programmers to avoid the bad
habit of writing numerous serial loops. The current standard, F95, went on to add more specific parallel
array tools, provided “pure” routines for general parallel operations, simplified the use of pointers, and
made a few user friendly refinements of some F90 features. Indeed, at this time one can view F90/95 as
the only cross-platform international standard language for parallel computing. Thus Fortran continues
to be an important programming language that richly rewards the effort of learning to take advantage of
its power, clarity, and user friendlyness.

We begin that learning process in Chapter 1 with an overview of general programming techniques.
Primarily the older “procedural” approach is discussed there, but the chapter is closed with an outline of
the newer “object” approach to programming. An experienced programmer may want to skip directly to
the last section of Chapter 1 where we outline some object-oriented methods. In Chapter 2, we introduce
the concept of the abstract data types and their extension to classes. Chapter 3 provides a fairly detailed
introduction to the concepts and terminology of object-oriented programming. A much larger supporting
glossary is provided as an appendix.

For the sake of completeness Chapter 4 introduces language specific details of the topics discussed in

©2002 J.E. Akin Vi

the first chapter. The Fortran 90/95 syntax is used there, but in several cases cross-references are made to
similar constructs in the C++ language and thetmas environment. While some readers may want to

skip Chapter 4, it will help others learn the Fortran 90/95 syntax and/or to read related publications that
use C++ or MTLAB. All of the syntax of Fortran 90 is also given in an appendix.

Since many Fortran applications relate to manipulating arrays or doing numerical matrix analysis,
Chapter 5 presents a very detailed coverage of the powerful intrinsic features Fortran 90 has added to
provide for more efficient operations with arrays. It has been demonstrated in the literature that object-
oriented implementations of scientific projects requiring intensive operations with arrays execute much
faster in Fortran 90 than in C++. Since Fortran 90 was designed for operations on vector and parallel
machines that chapter encourages the programmer to avoid unneeded serial loops and to replace them
with more efficient intrinsic array functions. Readers not needing to use numerical matrix analysis may
skip Chapter 5.

Chapter 6 returns to object-oriented methods with a more detailed coverage of using object-oriented
analysis and object-oriented design to create classes and demonstrates how to implement them as an OOP
in Fortran 90. Additional Fortran 90 examples of inheritance and polymorphism are given in Chapter
7. Object-oriented programs often require the objects to be stored in some type of “container” or data
structure such as a stack or linked-list. Fortran 90 object-oriented examples of typical containers are
given in Chapter 8. Some specialized topics for more advanced users are given in Chapter 9, so beginning
programmers could skip it.

To summarize the two optional uses of this text; it is recommended that experienced Fortran program-
mers wishing to learn to use OOP cover Chapters 2, 3, 6, 7, 8, and 9, while persons studying Fortran for
the first time should cover Chapters 1, 2, 3, and. Anyone needing to use numerical matrix analysis should
also include Chapter 5.

A OO glossary is included in an appendix to aid in reading this text and the current literature on OOP.
Another appendix on Fortran 90 gives an alphabetical listing on its intrinsic routines, a subject based
list of them, a detailed syntax of all the F90 statements, and a set of example uses of every statement.
Selected solutions for most of the assignments are included in another appendix along with comments
on those solutions. The final appendix gives the C++ versions of several of the F90 examples in the
text. They are provided as an aid to understanding other OOP literature. Since FO®ansBMare so
similar the corresponding MLAB versions often directly follow the F90 examples in the text.

Ed Akin, Rice University, 2002

©2002 J.E. Akin viii

Index

abstract data type, 15, 23, 27
abstraction, 19, 27
access, 36
access restriction, 19
accessibility, 19
accessor, 18
actual argument, 56
Ada, 33
addition, 56
ADT, seeabstract data type
ADVANCE specifier, 42, 103
agent, 18
algorithm, 51
ALLOCATABLE, 15
allocatable array, 160, 161
ALLOCATE, 15
allocate, 42
ALLOCATE statement, 75, 93
ALLOCATED, 15
allocation status, 75
AND operand, 42
area, 34
argument
inout, 71
input, 71
interface, 76
none, 71
number of, 76
optional, 76, 77
order, 76
output, 71
rank, 76
returned value, 76
type, 76
array, 26, 60, 67, 83
allocatable, 160
assumed shape, 77
automatic, 90, 160
Boolean, 168
constant, 160
dummy dimension, 160
flip, 170
mask, 168, 183
rank, 77, 159, 161, 170

rectangular, 170

reshape, 159

shape, 159

shift, 172

size, 159

unknown size, 77

variable rank, 160
array operations, 163
ASCII, 23

ASCI| character set, 77, 78, 99, 163

assembly language, 15
assignment operator, 10, 39
ASSOCIATED, 15
ASSOCIATED function, 76, 89
ASSOCIATED intrinsic, 132, 134
associative, 176, 177
asterisk (*), 58
ATAN2, 13
attribute, 105, 106, 109, 121, 125
private, 27, 125
public, 27
terminator, 25
attribute terminator, 25
attributes, 19, 27
automatic array, 90, 160, 161
automatic deallocation, 29

BACKSPACE statement, 76
bad style, 162
base class, 121
behavior, 106, 109
binary file, 163
bit

clear, 75

extract, 75

set, 75

shift, 75

test, 75
bit manipulation, 75
blanks

all, 78

leading, 78

trailing, 78
Boolean, 53
Boolean value, 23

bottom-up, 4
bounds, 159
bubble sort, 93, 95

ordered, 96
bug, 9

C,1,33,52
C++, 1, 10, 14, 24, 33, 52, 58, 60, 77, 82, 103,
123
CALL statement, 42
CASE DEFAULT statement, 64
CASE statement, 64
cases, 62
central processor unit, 73
character, 82
case change, 81
control, 77
from number, 81
functions, 78
non-print, 103
non-printable, 77
strings, 77
to number, 81
character set, 23
CHARACTER type, 23, 26, 53
chemical element, 25
circuits, 170
circular shift, 172
class, 15, 19, 33
base, 18
Date, 120, 123
derived, 18
Drill, 105
Employee, 125
Geometric, 120
Global_Paosition, 114
Great_Arc, 114
hierarchy, 33
instance, 33
Manager, 125, 135
Person, 120, 123
polymorphic, 133
Position_Angle, 109, 114
Professor, 123
Student, 120, 123
class code
class_Angle, 114
class_Circle, 34
class_Date, 37
class_Fibonacci Number, 29
class_Person, 37
class_Rational, 42
class_Rectangle, 34
class_Student, 37

©2002 J.E. Akin

Drill, 106
Global_Position, 114
Great_Arc, 114
Position_ Angle, 114
clipping function, 14, 71
CLOSE statement, 75
Coad/Yourdon method, 18
colon operator, 56, 61, 62, 78, 160, 163, 167,
170
column major order, 181
column matrix, 174
column order, 162
comma, 99
comment, 1,2,7,9, 12,52
commutative, 101, 176, 177
compiler, 10, 15, 91
complex, 10, 82, 165
COMPLEX type, 23, 53
COMPLEX type , 24
composition, 34, 36
conditional, 7-9, 11, 51, 58
conformable, 176
connectivity, 170
constant array, 160
constructor, 18, 29, 34, 125, 134, 135
default, 18
intrinsic, 18, 26, 34, 39
manual, 36
public, 37
structure, 26
CONTAINS statement, 29, 33, 34, 73, 76, 86
continuation marker, 10
control key, 79
conversion factors, 29
count-controlled DO, 12, 13
CPU, seecentral processor unit
curve fit, 91
CYCLE statement, 66

data abstraction, 19
data hiding, 36
data types, 10
intrinsic, 23
user defined, 23
date, 101
DEALLOCATE, 15
deallocate, 18, 42
DEALLOCATE statement, 75
debugger, 17
debugging, 16
default case, 64
default value, 29
dereference, 58
derived class, 121

5

derived type, 15, 23 exception, 75

component, 83 exception handler, 75
nested, 83 exception handling, 18
print, 85 exercises, 48
read, 85 EXIT statement, 66, 67
destructor, 29, 34, 41, 48 explicit loop, 11
determinant, 179 exponentrange, 24
diagonal matrix, 174 exponentiation, 56
dimension expression, 10, 51, 52, 89
constant, 161 external subprogram, 77
extent, 159
lower bound, 159 factorization, 178, 179
upper bound, 159 FALSE result, 63
distributive, 177 Fibonacci number, 29
division, 56 file, 75
DO statement, 29, 60, 62 column count, 100
DO WHILE statement, 67 internal, 81
DO-EXIT pair, 68, 69 line count, 100
documentation, 17 read status, 100
domain, 19 unit number, 101
dot_ producn 12 finite element, 43
double, 24 flip, 167,170
DOUBLE PRECISION type, 23, 24, 53 float, 53
dummy argument, 56, 73 floating point,seereal, 23, 24, 183
dummy dimension, 161 flow control, 11, 51, 58
dummy dimension array, 160 FORMAT statement, 34
dummy variable, 73 function, 7, 9, 51, 69, 70
dynamic binding, 18 argument, 13, 15
dynamic data structures, 38 extensible, 132
dynamic dispatching, 132 recursive, 42, 102
dynamic memory, 75 result, 70
allocation, 15 return, 13
de-allocation, 15 variable, 15
management, 15 function code
dynamic memory management, 89 Add, 29
add_Rational, 42
e, 25 Angle_, 114
EBCDIC, 23 circle_area, 34
EBCDIC character set, 77 clip, 71
Eiffel, 18 convert, 42
electric drill, 105 copy_ Rational, 42
ELSE statement, 42, 63, 67 Date_, 37
encapsulate, 15 Decimal_min, 114
encapsulation, 27, 33 Decimal_sec, 114
end off shift, 172 Default_Angle, 114
end-of-file, 76 Drill _, 106
end-of-record, 76 gcd, 42,102
end-of-transmission, 78 get_Arc, 114
EOF,seeend-of-file get_Denominator, 42
EOR,seeend-of-record get_Latitude, 114
EOT, seeend of transmission get_Longitude, 114
equation get_mr_rate, 106
number, 173 get_next_io_unit, 103
error checking, 18 Get_Next_Unit, 99

©2002 J.E. Akin 6

get_Numerator, 42 part of, 18

get_person, 37 horizontal tab, 78
get_torque, 106 Hubbard, J.R., 36
Great_Arc_, 114 hyperbolic tangent, 103
inputCount, 93
Int_deg, 114 identity matrix, 182
Int_deg_min, 114 if, 12
Int_deg_min_sec, 114 IF ELSE statement, 62
is_equal_to, 42 IF statement, 29, 37, 42, 62
make_Person, 37 if-else, 12
make_ Rational, 42 IF-ELSE pair, 63
make_ Rectangle, 36 IF-ELSEIF, 132
make_Student, 37 IMPLICIT COMPLEX, 53
mid_value, 70 IMPLICIT DOUBLE PRECISION, 53
mult_ Fraction, 87 IMPLICIT INTEGER, 52
mult_ Rational, 42 implicit loop, 12
new_ Fibonacci Number, 29 IMPLICIT NONE, 26, 29
Person_, 37 IMPLICIT REAL, 52
Rational , 42 implied loop, 61, 62, 160, 170
rectangle_ area, 34 INCLUDE line, 37, 42, 90
set_Date, 37 INDEX intrinsic, 81
set_Lat_and_Long_at, 114 indexed loop, 11
Student_, 37 infinite loop, 9, 68, 69
toc, 73 inheritance, 18, 33, 34, 73, 121
to_Decimal Degrees, 114 inherited, 37
to_lower, 81 inner loop, 62
to_Radians, 114 INQUIRE intrinsic, 93, 98, 103
to_upper, 81, 101 INQUIRE statement, 76
FUNCTION statement, 29 instance, 33, 124
integer, 10, 82, 165
Game of Life, 4 INTEGER type, 23, 24, 53
Gamma, 25 intent
gather-scatte, 172 in, 29
gcd,seegreatest common divisor inout, 29
generic function, 33, 34 statement, 29
generic interface, 134 INTENT statement, 29, 58, 71, 94
generic name, 34 interface, 2, 6, 9, 13, 15, 27, 34, 76, 93, 106,
generic object, 42 109, 123
generic routine, 123 general form, 77
generic subprogram, 77 human, 18
geometric shape, 34 input/output, 18
global positioning satellite, 108 prototype, 18
global variable, 14, 73 INTERFACE ASSIGNMENT (=) block, 87
GO TO statement, 65, 66 interface block, 34, 77
GPS,seeglobal positioning satellite interface body, 77
Graham method, 18 interface operator (*), 39
graphical representation, 27, 120 INTERFACE OPERATOR block, 86, 87
greatest common divisor, 42, 102 INTERFACE OPERATOR statement, 170
interface prototype, 105, 106, 125
Has-A, 109 INTERFACE statement, 34
header file, 131 internal file, 81
hello world, 52, 101 internal sub-programs, 73
hierarchie interpreter, 10, 15
kind of, 18 intrinsic, 170

©2002 J.E. Akin 7

intrinsic constructor, 86, 99, 108

intrinsic function, 12, 70

inverse, 182

IOSTAT = variable, 75, 76

Is-A, 108, 109

ISO_VARIABLE _LENGTH_STRING, 23
Is_A, 126

keyword, 123
KIND intrinsic, 24
Kind-Of, 109, 125

latitude, 108
least squares, 91
LEN intrinsic, 78, 81
length

line, 52

name, 52
LEN_TRIM intrinsic, 78
lexical operator, 95
lexically

greater than, 78

less than, 78

less than or equal, 78
library function, 16
line continuation, 101
linear equations, 177, 178
linked list, 38, 88, 89
linker, 16, 90
list

doubly-linked, 89

singly-linked, 89
logarithm, 70, 92
logical, 82

AND, 63

equal to, 63

EQV, 63

greater than, 63

less than, 63

NEQV, 63

NOT, 63

operator, 63

OR, 63
logical expression, 11
logical mask, 62
logical operator, 63
LOGICAL type, 23, 42
long, 24
long double, 24
longint, 24
longitude, 108
loop, 5, 7-9, 11, 51, 58, 183

abort, 68

breakout, 66

©2002 J.E. Akin

counter, 60
cycle, 66
exit, 60, 66
explicit, 59
implied, 61
index, 101
infinite, 60, 68
nested, 62, 66
pseudocode, 59
skip, 66
until, 67, 68
variable, 60
while, 67

loop control, 61, 162

loop index, 101

loop variable, 11

lower triangle, 175, 178

manual constructor, 86, 106
manual page, 17
mask, 165, 168, 169, 183
masks, 62
Mathematica, 51
mathematical constants, 25
Matlab, 1, 10, 14, 52, 61, 70, 100, 103
MATMUL intrinsic, 177
matrix, 159, 174
addition, 176
algebra, 159
column, 174
compatible, 176
determinant, 179
diagonal, 174
factorization, 178
flip, 167
identity, 178
inverse, 90, 178
multiplication, 163, 176
non-singular, 178
null, 174
skew symmetric, 175
solve, 90
square, 174,175
symmetric, 175
Toeplitz, 175
transpose, 163, 175
triangular, 175, 178
matrix addition, 181, 182
matrix algebra, 159, 176
matrix multiplication, 169, 177, 182
matrix operator, 38
matrix transpose, 169
maximum values, 71
MAXLOC intrinsic, 71

8

MAXVAL intrinsic, 71

mean, 70

member, 121

message, 27

methods, 3
private, 27
public, 27

military standards, 75

minimum values, 71

MINLOC intrinsic, 71

MINVAL intrinsic, 71

modular design, 6

module, 15, 25, 33, 69

module code
class_Angle, 114
class_Circle, 34
class_Date, 37
class_Fibonacci Number, 29
class_Global_Position, 114
class_Great_Arc, 114
class_Person, 37
class_Position_Angle, 114
class_Rational, 42
class_Rectangle, 34
class_Student, 37
exceptions, 76
Fractions, 87
Math_ Constants, 25
record_Module, 97
tic_toc, 73, 101

MODULE PROCEDURE statement, 34, 39, 86,

87,170

MODULE statement, 29

module variable, 29

modulo function, 56

multiple inheritanc, 121

multiplication, 56

Myer, B., 18

NAG, seeNational Algorithms Group
named

CYCLE, 66, 67

DO, 67

DO loop, 60

EXIT, 66, 67

IF, 64

SELECT CASE, 64
National Algorithms Group, 91
nested

DO, 67

IF, 62
new line, 79, 103
Newton-Raphson method, 11
non-advancing 1/O, 42

©2002 J.E. Akin

NULL function (f95), 89
NULLIFY, 15
nullify, 134
NULLIFY statement, 89
number
bit width, 24
common range, 24
label, 60
significant digits, 24
truncating, 166
type, 24
numeric types, 23
numerical computation, 38

object, 15, 19, 33
object oriented

analysis, 18, 43, 105, 109, 120

approach, 18

design, 18, 43, 105, 109, 120

language, 18

programming, 18, 105

representation, 18
Object Pascal, 18
OOA, seeobject oriented analysis
OOD, seeobject oriented design
OOP,seeobject oriented programming
OPEN statement, 75, 163
operator, 27

.op., 87,169

.solve., 90, 91

t.,, 170

X., 170

assignment, 39

binary, 87

defined, 18, 87

extended, 87

overloaded, 18

overloading, 39, 86

symbol, 87

unary, 87

user defined, 77, 169
operator overloading, 10
operator precedence, 52
operator symbol, 169
optional argument, 29, 37, 76
OPTIONAL attribute, 29, 36, 106
OR operand, 37
ordering array, 96
outer loop, 62
overloaded member, 123
overloading, 39, 48, 86

testing, 87

package, 15

9

parallel computer, 43
PARAMETER attribute, 25
Part-Of, 109
partial derivative, 180
partitioned matrix, 175
pass by reference, 57, 77, 88
pass by value, 57, 58, 77
path name, 37
pi, 25
pointer, 10, 23, 76, 87
allocatable, 15
arithmetic, 88
assignment, 89
association, 88
declaration, 88
dereference, 58
detrimental effect, 88
in expression, 89
inquiry, 89
nullify, 89
status, 15, 88
target, 88
pointer object, 133
pointer variable, 87
polymorphic class, 133
polymorphic interface, 120

polymorphism, 18, 33, 34, 121, 126

portability, 15
pre-processor, 131
precedence rules, 11
precision, 183

double, 82

kind, 24

portable, 82

single, 82

specified, 82

underscore, 24

user defined, 24
precision kind, 24
PRESENT function, 76
PRESENT intrinsic, 29, 36
PRINT * statement, 29
private, 33, 106
PRIVATE attribute, 29, 36
private attributes, 37
PRIVATE statement, 27
procedural programming, 18
procedure, 69
program

documentation, 17

executable, 17

scope, 14
program code, 114

©2002 J.E. Akin

array_indexing, 60
clip_an_array, 71
create_a_type, 26
declare_interface, 77
Fibonacci, 29
geometry, 34
if _else_logic, 63
linear_fit, 93
Logical_operators, 63
main, 37, 42
operate on_strings, 79
relational_operators, 63
simple_loop, 60
string_to_numbers, 81
structure_components, 85
test_bubble, 98
test_Drill, 108
test_Fractions, 87
test_Great_Arc, 114
program keyword, 56
PROGRAM statement, 26, 29
projectile, 102
prototype, 6, 76
pseudo-pointer, 96
pseudocode, 5, 14, 51, 71, 102
public, 33, 125
PUBLIC attribute, 29
public constructor, 37
public method, 27
PUBLIC statement, 27

guadratic equation, 3
queue, 89

rank, 161

rational number, 38, 39

read error, 103

READ statement, 29, 62, 76
real, 10, 82, 165

REAL type, 23, 24, 53
recursive algorithm, 88
RECURSIVE qualifier, 42, 102
reference, 10

relational operator, 52, 63, 78
remainder, 56

rename modifier, 121
reshape, 162

RESULT option, 29

result value, 70

return, 161

RETURN statement, 66
REWIND statement, 76

sample data, 99

10

scatter, 173
scope, 14

SELECT CASE statementl, 64
SELECTED_INT _KIND, 23, 24
SELECTED_REAL_KIND, 23, 24

selector symbol, 26, 29, 34
server, 18

short, 24

size, 12

SIZE intrinsic, 70, 90, 93, 159

Smalltalk, 18
sort, 87,91, 93, 96, 127
bubble, 93
characters, 95
object, 97
objects, 95
strings, 95
sorting, 42
sparse vector, 49
sparse vector class, 183
specification, 4
SQRT intrinsic, 27
square root, 27, 56, 70
stack, 89
STAT = variable, 75
statement, 2, 9
statement block, 12, 58
statements, 1

status
FILE, 76
IOSTAT =, 76
MODE, 76
OPENED=, 76

status checking, 161
STOP statement, 37
storage
column wise, 159
row wise, 159
string, 23, 56
adjust, 78
case change, 81
character number, 78
collating sets, 78
colon operator, 78
concatenate, 78
copy, 78
dynamic length, 77
from number, 81
functions, 78
length, 78
logic, 78
repeat, 78
scan, 78

©2002 J.E. Akin

to number, 81
trim, 78
verify, 78
strings, 77
strong typing, 53
struct, 53
structure, 23, 25, 33, 85
structure constructor, 26
structured programming, 13
submatrix, 175
subprogram, 69
recursive, 102
subroutine, 69, 70
subroutine code, 114
assign, 87
Change, 77
delete_Rational, 42
equal Fraction, 87
equal Integer, 42
exception_status, 76
in, 106
Integer_Sort, 96, 99
invert, 42
list, 42
List_Angle, 114
List_Great_Arc, 114
List_Position, 114

List_Position_Angle, 114

List_Pt_to_Pt, 114
Isg_fit, 93
mult_Fraction, 87
No_Change, 77
out, 106

Print, 29

print_ Date, 37
print_DOB, 37
print_DOD, 37
print_DOM, 37
print_GPA, 37
print_Name, 37
print_Sex, 37
readData, 93, 101
read_Date, 37

Read_Position_Angle, 114

reduce, 42

set_DOB, 37
set_DOD, 37
set_DOM, 37
set_Latitude, 114
set_Longitude, 114
simple_arithmetic, 56
Sort_Reals, 94
Sort_String, 95

11

String_ Sort, 99
test_matrix, 90
tic, 73
SUBROUTINE statement, 29
subroutines, 33
subscrip, 159
subscript, 26, 60
bounds, 159
range, 181
vector, 170
subtraction, 56
subtype, 133
subtyping, 126, 132
sum, 12
SUM intrinsic, 70, 93, 169
super class, 121
syntactic error, 17
SYSTEM_ CLOCK intrinsic, 73

tab, 79, 99, 103
TARGET, 15

target, 23, 76, 88, 89
template, 43, 126, 128
tensor, 159

testing, 15

time of day, 101
Toeplitz matrix, 175
top-down, 4

transformational functions, 169

transpose, 163, 175, 177
TRANSPOSE intrinsic, 170
tree structure, 38, 88, 89
triplet, seecolon operator
true, 12
TRUE result, 63
truss, 170
type
conversion, 81
default, 52
implicit, 52
TYPE declaration, 26, 29
TYPE statement, 27, 34

unexpected result, 169
upper triangle, 175, 178
USE association, 121, 125

USE statement, 29, 33, 34, 37, 86, 90

user defined operator, 169
user interface, 2

validation, 29
variable, 8, 10, 23, 51
global, 14
name, 10

©2002 J.E. Akin

type, 10
variable rank array, 160
vector, 159
vector class, 48, 183
vector subscript, 62, 170
volume, 48

WHERE construct, 169
WHERE statement, 62, 67, 169
while-true, 68

wildcard, 128

WRITE statement, 34, 62, 76

12

Chapter 1

Program Design

1.1 Introduction

The programming process is similar in approach and creativity to writing a paper. In composition, you
are writing to express ideas; in programming you are expressing a computation. Both the programmer
and the writer must adhere to the syntactic rules (grammar) of a partianfzrage In prose, the funda-
mental idea-expressing unit is the sentence; in programming, two-tgitiementandcomments-are
available.

Standing back, composition from technical prose to fiction should be organized broadly, usually
through an outline. The outline should be expanded as the detail is elaborated, and the whole re-examined
and re-organized when structural or creative flaws arise. Once the outline settles, you begin the actual
composition process, using sentences to weave the fabric your outline expr€dadsy in writing
occurs when your sentences, both internally and globally, communicate the outline succinctly and clearly.
We stress this approach here, with the aim of developipgopgramming style that produces efficient
programs that humans can easily understand

To a great degree, no matter which language you choose for your composition, the idea can be ex-
pressed with the same degree of clarity. Some subtleties can be better expressed in one language than
another, but the fundamental reason for choosing your language is your audience: People do not know
many languages, and if you want to address the American population, you had better choose English
over Swahili. Similar situations happen in programming languages, but they are not nearly so complex
or diverse. The number of languages is far fewer, and their differences minor. Fortran is the oldest lan-
guage among those in use today. C and C++ differ from it somewhat, but there are more similarities
than not. MATLAB's language, written in C and Fortran, was created much later than these two, and its
structure is so similar to the others that it can be easily mastered. The C++ language is an extension of
the C language that places its emphasis on object oriented programming (OOP) methods. Fortran added
object oriented capabilities with its F90 standard, and additional enhancements for parallel machines
were issued with F95. The Fortran 2000 standard is planned to contain more user-friendly constructs for
polymorphism and will, thus, enhance its object-oriented capabilities. This creation of a new language
and its similarity to more established ones are this book’s main points: More computer programming lan-
guages will be created during your career, but these new languages will probably not be much different
than ones you already know. Why should new languages evolve2AtnAs’s case, it was the desire to
express matrix-like expressions easily that motivated its creation. The difference betweensgvand
Fortran 90 is infinitesimally small compare to the gap between English and Swalhili.

An important difference between programming and composition is that in programming you are writ-
ing for two audiences: people and computers. As for the computer audience, what you write is “read” by
interpreters and compilers specific to the language you used. Thegignegid about syntactic rules,
and perfornexactlythe calculations you say. It is like a document you write being read by the most de-
tailed, picky person you know; every pronoun is questioned, and if the antecedent is not perfectly clear,
then they throw up their hands, rigidly declaring that émire document cannot be understood. Your
picky friend might interpret the sentence “Pick you up at eight” to mean that you will literally lift him or
her off the ground at precisely 8 o’clock, and then demand to know whether the time is in the morning or

©2001 J.E. Akin 1

afternoon and what the date is.

Humans demand even more from programs. This audience consists of two main groups, whose goals
can conflict. The larger of the two groups consistsi®érs Users care about how the program presents
itself, its user interfaceand how quickly the program runs, heifficientit is. To satisfy this audience,
programmers may use statements that are overly terse because they know how to make the program more
readable by the computer’s compiler, enabling the compiler to produce faster, but less human-intelligible
program. This approach causes the other portion of the audiep@@rammers-to boo and hiss. The
smaller audience, of whicjou are also a member, must be able to read the program so that they can
enhance and/or change it. A characteristic of programs, which further distinguishes it from prose, is
that you and others will seek to modify your program in the future. For example, in the 1960s when
the first version of Fortran was created, useful programs by today’s standards (such as matrix inversion)
were written. Back then, the user interface possibilities were quite limited, and the use of visual displays
was limited. Thirty years later, you would (conceivably) want to take an old program, and provide a
modern user interfacdf the program is structurally sound (a good outline and organized well) and is
well-written, re-using the “good” portions is easy accomplished.

The three-audience situation has prompted most languages to sbpfgiocomputer-oriented and
human-oriented “prose”. The program’s meaning is conveyest@gmentsand is what the computer
interprets. Humans read this part, which in virtually all languages bears a strong relationship to mathe-
matical equations, and also ree@mmentsComments areotread by the computer at all, but are there
to help explain what might be expressed in a complicated way by programming language Jyreax.
document or program you write today should be understandable tompnatonly by you, but also by
others. Sentences and paragraphs should make sense after a day or so of gestation. Paragraphs and larger
conceptual units should not make assumptions or leaps that confuse the reader. Otherwise, the document
you write for yourself or others served no purpose. The same is true with programming; the program’s
organization should be easy to follow and the way you write the program, using both statements and com-
ments, should help you and others understand how the computation proceeds. The existence of comments
permits the writer to directly express the program'’s outline in the program to help the reader comprehend
the computation.

These similarities highlight the parallels between composition and programming. Differences become
evident because programming is, in many ways, more demanding than prose writing. On one hand, the
components and structure of programming languages are far simpler than the grammar and syntax of any
verbal or written language. When reading a document, you can figure out the misspelled words, and not
be bothered about every little imprecision in interpreting what is written. On the other, simple errors, akin
to misspelled words or unclear antecedents, can completely obviate a program, rendering it senseless or
causing it to go wildly wrong during execution. For example, there is no real dictionary when it comes
to programming. You can define variable names containing virtually any combination of letters (upper
and lower case), underscoresid numbers. A typographical error in a variable’s name can therefore
lead to unpredictable program behavior. Furthermore, computer execution speeds are becoming faster
and faster, meaning that increasingly complex programs can run very quickly. For example, the program
(actually groups of programs) that run NASA's space shuttle might be comparable in size to Bego's
Misérables but its complexity and immediate importance to the “user” far exceeds that of the novel.

As a consequence, program design must be extremely structured, having the ultimate intentions of
performing a specific calculation efficiently with attractive, understandable, efficient programs. Achiev-
ing these general goals means breaking the program into components, writing and testing them separately,
then merging them according to the outline. Toward this end, we stredslar programmingModules
can be on the scale of chapters or paragraphs, and share many of the same features. They consist of a se-
quence of statements that by themselves express a meaningful computation. They can be merged to form
larger programs by specifying what they do and how timgrfaceto other packages of software. The
analogy in prose is agreeing on the character's names and what events are to happen in each paragraph
so that events happen to the right people in the right sequence once the whole is formed. Modules can be
re-used in two ways. As with our program from the 1960s, we would “lift” the matrix inversion routine
and put a different user interface around it. We can also re-use a routine within a program several times.
For example, solving the equations of space flight involves the inversion of many matrices. We would

©2001 J.E. Akin 2

want our program to use the matrix inversion routine over and over, presenting it with a different matrix
each time.

The fundamental components of good program design are

1. Problem definition, leading to a program specification

2. Modular program design, which refines the specification

3. Module composition, which translates specification into executable program

4. Module/program evaluation and testing, during which you refine the program and find errors
5. Program documentation, which pervades all other phases

The result of following these steps is an efficient, easy-to-use program that has a user’s guide (how does
someone else run your program) and internal documentation so that other programmers can decipher the
algorithm.

Today it is common in a university education to be required to learn at least one foreign language.
Global interactions in business, engineering, and government make such a skill valuable to one’s career.
Soitis in programming. One often needs to be able to read two or three programming largaages
if you compose programs in only one language. It is common for different program modules, in different
languages, to be compiled separately and then brought together by a “linker” to form a single executable.
When something goes wrong in such a process it is usually helpful to have a reading knowledge of the
programming languages being used.

When composing to express ideas there are, at least, two different approaches to consider: poetry and
prose. Likewise, in employing programming languages to create software there are distinctly different
approaches available. The two most common ones are “procedural programming” and “object-oriented
programming.” The two approaches are conceptually sketched in Fig. 1.1. They differ in the way that the
software development and maintenance are planned and implemented. Procedures may use objects, and
objects usually use procedures, calfadthods Usually the object-oriented code takes more planning
and is significantly larger, but it is generally accepted to be easier to maintain. Today when one can have
literally millions of users active for years or decades, maintenance considerations are very important.

1.2 Problem Definition

The problem the program is to solve must be well specified. The programmer must broadly frame the
program’s intent and context by answering several questions.

e What must the program accomplish?
From operating the space shuttle to inverting a small matrix, some thought must be gham to
the program will do what is needed. In technical terms, we need to defirdgbethmemployed
in small-scale programs. In particular, numeric programs need to consider well how calculations
are performed. For example, finding the roots of a general polynataraknds numeric (non-
closed form) solution. The choice of algorithm is influenced by the variations in polynomial order
and the accuracy demanded.

e What inputs are required and in what forms?
Most programs interact with humans and/or other programs. This interaction needs to be clearly
specified as tovhatformat the data will take andthenthe data need to be requested or arrive.

e What is the execution environment and what should be in the user interface?
Is the program a stand-alone program, calculating the quadratic formula for example, or do the
results need to be plotted? In the former case, simple user input is probably all that is needed, but
the programmer might want to write the program so that its key components could be used in other
programs. In the latter, the program probably needs to be written so that it meshes well with some
pre-written graphics environment.

©2001 J.E. Akin 3

Generation n Generation n+1

Figure 1.1 Here, the game is played on & 8 square array, and the filled squares indicate the presence
of life. The arrows emanating from one cells radiate to its eight neighbors. The rules are applied to the

nth generation to yield the next. The row of three filled cells became a column of three, for example.
What is going to happen to this configuration the next generation?

e What are the required and optional outputs, and what are their formats (printed, magnetic, graph-
ical, audio)?
In many cases, output takes two formmsteractiveandarchival. Interactive output means that the
programs results must be provided to the user or to other programs. Data format must be defined
so that the user can quickly see or hear the programs results. Archival results need to be stored on
long-term media, such as disk, so that later interpretation of the file's contents is easy (recall the
notion of being able to read tomorrow what is written today) and that the reading process is easy.

The answers to these questions help programmers organize their thoughts, and can lead to decisions
about programming language and operating environment. At this point in the programming process, the
programmer should know what the program is to do and for whom the program is written. We don’t yet
have a clear notion of how the program will accomplish these tasks; that comes down the road. This
approach to program organization and design is knowio@gslowndesign. Here, broad program goals

and context is defined first, with additional detail filled in as needed. This approach contraststéath-
updesign, where the detail is decided first, then merged into a functioning whole. For programming, top-
design makes more sense, but you as well as professional programmers are frequently lured into writing
code immediately, usually motivated by the desire to “get something running and figure out later how to
organize it all.” That approach is motivated by expediency, but usually winds up being more inefficient
than a more considered, top-down approach that takes longer to get off the ground, but with increased
likelihood of working more quickly. The result of defining the programming problemsigeification

how is the program structured, what computations does it perform, and how should it interact with the
user.

An Extended Example: The Game of Life
To illustrate how to organize and write a simple program, let’s structure a program thafplyame

of Life. Conway'’s “Game of Life” was popularized in Martin Gardner’'s Mathematical Games column in
the October 1970 and February 1971 issueSa@éntific AmericanThis game is an example of what is
known in computer science asllular automata An extensive description of the game can be found in
The Recursive Univerdgy William Poundstone (Oxford University Press, 1987).

The rules of the game are quite simple. Imagine a rectangular array of square cells that are either
empty (no living being present) or filled (a being lives there). As shown in Fig. 1.1, each cell has eight
neighboring cells. At each tick of the clock, a new generation of beings is produced according to how
many neighbors surround a given cell.

o If a cell is empty, fill it if three of its neighboring cells are filled; otherwise, leave it empty.

e Ifacellisfilled, it
dies of loneliness if it has zero or one neighbors,
continues to live if it has two or three neighbors,
dies of overcrowding if it has more than three neighbors.

©2001 J.E. Akin 4

The programming task is to allow the user to “play the game” by letting him or her define initial
configurations, start the program, which applies the rules and displays each generation, and stop the
game at any time the user wants, returning to the initialization stage so that a new configuration can be
tried. To understand the program task, we as programmers need to pose several questions, some of which
might be

e What computer(s) are preferred, and what kind of display facilities do they have?
¢ |s the size of the array arbitrary or fixed?
e Am | the only programmer?

No matter how these questions are answered, we start by forming the program’s basic outline. Here is
one way we might outline the program in a procedural fashion.

1. Allow the user to initialize the rectangular array or quit the program.
2. Start the calculation of the next generation.

(a) Apply game rules to the current array.

(b) Generate a new array.

(c) Display the array.

(d) Determine whether the user wants to stop or not.

i. If not, go back to 2a.
ii. Ifso,gotostepl

Note how the idea of reusing the portion of the program that applies game rules arises naturally. This
idea is peculiar to programming languages, having no counterpart in prose (It's like being told at the end
of a chapter to reread it!). This kind tdfopingbehavior also occurs when we go back and allow the user

to restart the program.

This kind of outline is a form opseudocode’ A programming language-like expression of how
the program operates. Note that at this point, the programming process is language-independent. Thus
informal pseudocodallows us to determine the program’s broad structure. We have not yet resolved
the issue of how, or if, the array should be displayed: Should it be refreshed as soon as a generation
is calculated, or should we wait until a final state is reached or a step limit is exceeded? Furthermore,
if calculating each generation takes a fair amount of time, our candidate program organization will not
allow the user to stop the program until a generation’s calculations have been finished. Consequently, we
may, depending on the speed of the computer, want to limit the size of the array. A more detailed issue
is how to represent the array internally. These issues can be determined later; programmers frequently
make notes at this stage about how the program would behave with this structure. Informal pseudocode
should remain in the final program in the form of comments.

Writing a program’s outline is not a meaningless exercisiaw the program will behave is deter-
mined at that point. An alternative would be to ask the user how many generations should be calculated,
then calculate all generations, and display the results as a movie, allowing the user to go backward, play
in slow motion, freeze-frame, etc. Our outline will not allow such visual fun. Thus, programmers usually
design several candidate program organizations, understand the consequences of each, and determine
which best meets the specifications.

fThe use of the word “code” is interesting here. It means program as both a noun and a verb: From the earliest days of
programming, what the programmer produced was caltete and what he or she did was “code the algorithm.” The origin of
this word is somewhat mysterious. It may have arisen as an analogy to Morse code, which used a series of dots and dashes as an
alternative to the alphabet. This code is tedious to read, but ideal for telegraphic transmission. A program is an alternate form of an
algorithm better suited to computation.

©2001 J.E. Akin 5

Program

Main Control
Subprogram #1

Subprogram #2

Figure 1.2 Modular program organization relies on self-contained routines where the passage of data (or
messages) from one to the other is very well defined, and each routine’s (or objects) role in the program
becomes evident.

1.3 Modular Program Design

We now need to define what the routines are and how they are interwoven to archive the program’s goals.
(We will deepen this discussion to include objects and messages when we introduce object-oriented
formulations in Sec. 1.7.) What granulariyhow large should a routine becomes with programming
experience and depends somewhat on the language used to express it. A program typically begins with
a main segment that controls or directs the solution of the problem by dividing it into sub-tasks (see
Figure 1.2). Each of these may well be decomposed into other routines. This step-wise refinement
continues as long as necessary, as long as it benefits program clarity and/or efficiencmodihiar
program desigts the key feature of modern programming design practice. Furthermore, routines can be
tested individually, and replaced or rewritten as needed. Before actually writing each routine, a job known
in computer circles as thenplementationthe program’s organization can be studied: Will the whole
satisfy design specifications? Will the program execute efficiently? As the implementation proceeds,
each routine’snterfaceis defined: How does it interact with its mastethe routine thatalledit —and

how are data exchanged between the two? In some most languages, this interfaceaatyyged

The routine’s interface-what it expects and what values it calculatesan be defined and the whole
program merged together and compiled to check for consistency without perfamycglculations. In

small programs, where you can have these routine definitions easily fitting onto one page, this prototyping
can almost be performed visually. In complex programs, where there may be hundreds or thousands of
routines, such prototypingally pays off. Once the interfaces begin to form, we ask whether they make
sense: Do they exchange information efficiently? Does each routine have the information it needs or
should the program be reorganized so that data exchange can be accomplished more efficiently?

From another viewpoint, you should develop a programming style that “hedges your bets:” Programs
should be written in such a way that allows their components to be used in a variety of contexts. Again,
using a modular programming style, the fundamental components of the calculation should be expressed
as a series of subroutines or functions, the interweaving of which is controlled by a main program that
reads the input information and produces the output. A modular program can have its components ex-
tracted, and used in other programs (program re-use) or interfaced to environments. So-called monolithic
programs, which tend not to use routines and express the calculation as a single, long-winded program,
should not be written.

We emphasize that this modular design process proeeidusutactually writing program statements.

We use a programming-like language, knowificamal pseudocodeo express in prose what routines call
others and how. This prose might re-express a graphic representation of program organization, such as
that shown in Figure 1.2. In addition, expressing the program’s design in pseudocode eases the transition
to program compoaosition, the actual programming process. The components of formal pseudocode at this
point are few:

©2001 J.E. Akin 6

1 I This is a comment line in Fortran 90

2

3 program main I a program called main

4 ! begin the main program

5 print *,"Hello, world" ! * means default format

6 end program main ! end the main program

1 /I This is a comment line in C++ .

2 #include <iostream.h> // standard input output library

3

4 main () /I a program called main

5 /I begin the main program
6 cout << "Hello, world" << endl ; // endl means new line)

7 return O; /I needed by some compilers
8 /I end the main program
% % This is a comment line in MATLAB

3 function main () % a program called main

4 % begin the main program

5 disp ('Hello, world’); % display the string

6 % end the main program

Figure 1.3 'Hello World’ Program and Comments in Three Languages

e commentshat we allow to include the original outline and to describe computational details;

e functionsthat express each routine, whether it be computational or concerned with the user inter-
face;

e conditionalsthat express changing the flow of a program; and
o |oopsthat express iteration.

Comments. A comment begins with a comment character, which in our pseudocode we take to be the
exclamation point , and ends when the line ends. Comments can consume an entire line or the right
portion of some line.

| This is a comment: you can read it, but the computer won't

Statements

statement | From the comment character to end of this line is a comment

Statements

The statements cited in the above lines share the status of the sentence that characterizes most written

languages. It is made up of components specific to the syntax of the programming language in use. For
example, most programming books begin with a program that does nothing but print “Hello world” on
the screen (or other output device). The pseudocode for this might have the following form:

! if necessary, include the device library

initiate my program, say main

send the character string “Hello world” to the output device library

terminate my program

Figure 1.3 illustrates this in three common languages, beginning with F90. At this point one can now
say that they are multi-lingual in computer languages. Here, too, we may note that, unlike the other two
languages shown, in Fortran when we begin a specific type of software construct, we almost always ex-
plicitly declare where we are ending its scope. Here the construct papra@ram andend program

but the same style holds true fiér andend if pairs, for example. All languages have rules and syntax

to terminate the scope of some construct, but when several types of different constructs occur in the same
program segment, it may be unclear in which order they are terminating.

Functions. To express a program’s organization through its component routines and routines, we use
the notation of mathematicainctions Each program routine accepts inputs, expressed as arguments of
a function, performs its calculations, and returns the computational results as functional values.

output _1 = routine (input _1,...input —_m)

or

©2001 J.E. Akin 7

call routine (input _1,.., input _m, output _1,..., output —_n)

In Fortran, a routine evaluating a single output object, as in the first style, is cdileatt#onand, oth-

erwise, it is called asubroutine Other languages usually use the term function in both cases. Each
routines’s various inputs and results are representedhbigbles which, in sharp contrast to mathemat-

ical variables, have text-like names that indicate what they contain. These hames norsaates, but

may contain several words. There are two conventions for variable names containing two or more words:
either words are joined by the underbar character (like next _generation) or each word begins

with an uppercase letter (likdextGeneration). The results of a routines’s computation are always
indicated by a sequence of variables onléfeside of the equals siga. The use of an equals sign does

not mean mathematical equality; it is a symbol in our pseudocode that means “assign a routines’s results
to the variables (in order) listed on the left.”

Conditionals. To create something other than a sequential execution of routines, conditionals form a
test on the values of one or more variables, and continue execution at one point or another depending
on whether the test was true or false. That is usually done with thetatement. It either performs the
instruction(s) that immediately follow (after thieen keyword) if some condition is valid (like>0) or

those that follow thelse statement if the condition is not true.

if test then

statement group A ! executed if true
else

statement group B I executed if false
end if

The test here can be very complicated, but is always based on values of variables. Parentheses should be
used to clarify exactly what the test is. For example,

(x > 0) and (y = 2)

One special statement frequently foundfinstatements istop : This command means to stop or abort
the program, usually with a fatal error message.

Conditionals allow the program to execute non-sequentiallygtig mode allowed by statements).
Furthermore, program execution order can be data-dependent. In this way, how the program be-
haves—what output it produces and how it computes the outpdépends on what data, or messages, it
is given.This means that exact statement execution order is determined by the data, and/or messages, and
the programmer- not just the programmett is this aspect of programming languages that distinguishes
them from written or spoken languages. An analogy might be that chapters in a novel are read in the
order specified by the reader’s birthday; what that order migli$ determined by the novelist through
logical constructs. The tricky part is that in programming languages, each executiomustenake
sense and not lead to inconsistencies or, at worst, errors: The novel must make sense in all the ways the
novelist allows. This data- and message-dependent execution order can be apgliguicgramming
levels, from routine execution to statements. Returning to our analogy to the novel, chapter (routine)
order and sentence (statement) order depend on the reader’s birthday. Such complexity in prose has little
utility, but does in programming. How else can a program be written that informs the user on what day
of the week and under what phase of the moon she was born given the birth date?

Loops. Looping constructs in our formal pseudocode take the forrdaofoops where the keyword

do is paired with the key phrassnd do to mean that the expressions and routine invocations contained
therein are calculated in order (from top to bottom), then calculated again starting with the first, then
again, then again, ..., forever. The loogases only when we explicitly exit it with tlegit command.

The pseudocode loop shown below on the left has the execution history shown on the right.

do

y = routine _1(x) y = routine _1(x)

z = routine 2(y z = routine _2(y

X = routine 3(z X = routine _3(z) [let's say x=-1]

if x > 0 then y = routine _1(X

exit z = routine _2(y

end if X = routine _3(z) [let's say x=1]

end do [program ends]

©2001 J.E. Akin 8

| Loop | Pseudocode |

Indexed loop do index=b,i,e
Statements
end do

Pre-test loop while (test)
statements
end while

Post-test loop do
Statements
if test exit

end do

Table 1.1 Pseudocode loop constructs

Infinite loopsoccur when the Boolean expression always evaluates to true; these are usually not what
the programmer intended and represent one type of program-eartioug.” The constructs enclosed
by the loop can banything statements, logical constructs, and other loops! Because of this variety,
programs can exhibit extremely complex behaviors. How a program behaves dep¢inelg on the
programmer and how their definition of the program flows based on user-supplied data and messages.
The pseudocode loops are defined in Table 1.1.

1.4 Program Composition

Composing a program is the process of expressing or translating the program design into computer lan-
guage(s) selected for the task. Whereas the program design can often be expressed as a broad outline,
each routine’s algorithm must be expressed in complete detail. This writing process elaborates the formal
pseudocode and contains more explicit statements that more greatly resemble generic program state-
ments.

Generic programming language elements fall into five basic categories: the four we had be-
fore—comments, loops, conditionals, and functiersnd statements We will expand the variety of
comments, conditionals, loops, and functions/subroutines, which define routines and their interfaces.
The new element is the statement, the workhorse of programming. It is the statement that actually per-
forms a concrete computation. In addition to expanding the repertoire of programming constructs for
formal pseudocode, we also introduce what these constructs arainAd, Fortran, and C++. As we
shall see, formal pseudocode parallels these languages; the translation from pseudocode to executable
program is generally easy.

1.4.1 Comments

Comments need no further elaboration for pseudocode. However, programmers are encouraged to make
heavy use of comments.

1.4.2 Statements

Calculation is expressed tstatementswhich share the structure (and the status) of the sentence that
characterizes virtually all written language. Statements that are always executed one after the other as
written. A statement in most languages has a simple, well-defined structure common to them all.

variable = expression

TThis term was originated by Grace Hopper, one of the first programmers. In the early days of computers, they were partially
built with mechanical devices known as relays. A relay is a mechanical switch that controls which way electric current flows:
The realization of the logical construct in programming languages. One day, a previously working program stopped being so.
Investigation revealed that an insect had crawled into the computer and had become lodged in a relay’s contacts. She then coined
the term “bug” to refer not only to such hardware failures, but to software ones as well since the user becomes upset no matter
which occurs.

©2001 J.E. Akin 9

Statements are intended to bear a great resemblance to mathematical equations. This analogy with math-
ematics can appear confusing to the first-time programmer. For example, the statementl , which
means “increment the variabdeby one” makes perfect sense as a programming statement, but no sense
as an algebraic equality since it seems to say(@hatl. Once you become more fluent in programming
languages, what is mathematics and what is programming become easily apparent. Statements are said to
beterminatedwhen a certain character is encountered by the interpreter or the compiler. In Fortran, the
termination character is a carriage return or a semicgldnlf C++, all statements must be terminated
with a semicolon or a comma, carriage returnsndbterminate statements. MLAB statements may
end with a semicolon;” to suppress display of the calculated expression’s value. Most statements in
MATLAB programs end thusly.

Sometimes, statements become quite long, becoming unreadable. Two solutions to improve clarity
can be used: decompose the expression into simpler expressionsamtiseiation markerso allow
the statement to span more than one line of text. The first solution requires you to use intermediate vari-
ables, which only results in program clutter. Multiline statements can be broken at convenient arithmetic
operators, and this approach is generally preferred. C++ has no continuation character; statements can
span multiple text lines, and end only when the semicolon is encounteredalnAd, the continuation
character sequence comprise three periods* placed at the end of each text line (before the carriage
return or comment character). In Fortran, a statement is continued to the next line when an angersand
is the last character on the line.

Variables. A variableis a named sequence of memory locations to which values can be assigned. As
such, every variable has an address in memory, which most languages conceal from the programmer so as
to present the programmer wittseorage modeihdependent of the architecture of the computer running

the program. Program variables correspond roughly to mathematical variables that can be integer, real,
or, complex-valued. Program variables can be more general than this, being able in some languages
to have values equal to a user-defined data type or object which, in turn, contains sequences of other
variables. Variables in all languages haxames a sequence of alphanumeric characters that cannot
begin with a number. Thus, A, a2, andadb are feasible variable names (i.e., the interpreter or compiler

will not complain about these) whika is not. Since programs are meant to be read by humans as well as
interpreters and compilers, such names may not lead to program degityifthey are carefully defined

and documented. The compiler/interpreter does not care whether humans can read a program easily or
not, but you shouldUse variable names that express what the variables repregemtexample, use

force as aname rather thdnusei ,j, andk for indices rather thain ori1l .

In most languages, variables haype the kind of quantity stored in them. Frequently occurring
data types are integer and floating point, for example. Integer variables would be chosen if the variable
were only used as an array index; floating point if the variable might have a fractional part.

In addition to having a name, type, and address, each variable has a value of the proper type. The
value should be assigned before the variable is used elsewhere. Compilers should indicate an error if a
variable is used before it has been assigned a value. Some languages allow variables to have aliases which
are usually referred to as “pointers” or “references”. Most higher level languages also allow programmers
to create “user defined” data types.

Assignment Operator. The symbok in a statement mearssignmentf the expression into the vari-
able provided on the left. This symbol does not mean algebraic equality; it means thakpirssion

is computed, its value is stored in thariable . Thus, statements that make programming sense, like
a=a+1, make no mathematical sense becausarieans different things in the two contexts. Fortran
90, and other languages, allow the user to extend the meaning of the assignment synbater
operations. Such advanced features are referred to as “operator overloading”.

Expressions. Just as in mathematics, expressions in programming languages can have a complicated
structure. Most encountered in engineering programs amount to a mathematical expression involving
variables, numbers, and functions of variables and/or numbers. For example the following are all valid
statements.

A=B

X = sin(2*z
force = G*massl*mass2/(r*r)

©2001 J.E. Akin 10

Thus, mathematical expressions obey the usual mathematical conventions, but with one added complex-
ity: Vertical position cannot be used help express what the calculation is; program expressions have only
one dimension. For example, the notatipnclearly expresses to you how to perform the calculation.
However, the one-dimensional equivalent, obtained by smashing this expression onto one line, becomes
ambiguous: doesa/bc mean dividea by b then multiply bye, or divide a by the product ob andc?
This ambiguity is relieved in program expressions in two ways. The first, the human-oriented way, de-
mands the use of parenthesegrouping constructs-to clarify what is being meant, as {a/b)c . The
language-oriented way makes usepafcedence rulesVhat an expression means is inferred from a set
of rules that specify what operations take effect first. In our example, because division is stronger than
multiplication,a/bc means(a/b)c. Most people find that frequent reliance on precedence rules leads to
programs that take a long time to decipher; the compiler/interpreter is “happy” either way.

Expressions make use of the common arithmetic and relational operators. They may also involve
function evaluations; thein function was called in the second expression given in the previous example.
Programming expressions can be as complicated as the arithmetic or Boolean-algebra ones they emulate.

1.4.3 Flow Control

If a program consisted of a series of statements, statements would be executed one after the other, in the
order they were written. Such is the structure of all prose, where the equivalent of a statement is the
sentence. Programming languages differ markedly from prose in that statements can be meaningfully
executed over and over, with details of each execution differing each time (the value of some variable
might be changed), or some statements skipped, with statement ordering dependent on which statements
were executed previously or upon external events (the user clicked the mouse). With this extra variability,
programming languages can be more difficult for the human to trace program execution than the effort
it takes to read a novel. In written languages, sentences can be incredibly complex, much more so
than program statements; in programming, the sequencing of statery@otgram flow—can be more
complex.

The basic flow control constructs present in virtually all programming languagedoaps
— repetitive execution of a series of statementndconditionals—diversions around statements.

Loops. Historically, the loop has been a major tool in designing the flow control of a procedure and one
would often code a loop segment without giving it a second thought. Today massively parallel computers
are being widely used and one must learn to avoid coding explicit loops in order to take advantage of
the power of such machines. Later we will review which intrinsic tools are included in F90 for use on
parallel (and serial) computers to offer improved efficiency over explicit loops.

The loop allows the programmer to repeat a series of statements, with a paratietéyop vari-
able—taking on a different value for each repetition. The loop variable can be an integer or a floating-
point number. Loops can be used to control iterative algorithms, such as the Newton-Raphson algorithm
for finding solutions to nonlinear equations, to accumulate results for a sequential calculation, or to
merely repeat a program phrase, such as awaiting for the next typed input. Loops are controlled by a
logical expression , which when evaluated toue allows the loop another iteration and when false
terminates the loop and commences program execution with the statement immediately following those
statements enclosed within the loop.

There are three basic kinds of looping constructs, the choice of which is determined by the kind
of iterative behavior most appropriate to the computation. ifldexed loopoccurs most frequently in
programs. Here, one loop variable varies across a range of values. In pseudocode, the index’s value
begins ab, increments each time through the loopihyand the loop ends when the index exceeds
For example:

doj=D, e i
or using the default increment of unity:
doj=b, e

As an example of an indexed loop, let’s explore summing the series of numbers stored in the array
If we knew the number of elements in the array when we write the program, the sum can be calculated

©2001 J.E. Akin 11

explicitly without using a loop.
sum = A1 + A + A3 + A4

However, we have already said that our statements must be on a single line, so we need a way to repre-
sent the subscript attached to each number. We develop the convention that a subscript is placed inside
parentheses like

sum = A(l) + A(2) + A@3) + A@)

Such programs are very inflexible, and thard-wiredprogramming style is discouraged. For example,
suppose in another problem the array contains 1,000 elements. With an indexed loop, a more flexible,
easier to read program can be obtained. Here, the index assumes a succession of values, its value tested
against the termination vallreforethe enclosed statements are executed, with the loop terminating once
this test fails to be true. The following generic indexed loop also sums array elements, but in a much
more flexible, concise way.

sum = 0

for i = 1,n

sum = sum + A(i)

end for
Here, the variablea doesnotneed to be known when the program is written; this value can wait until the
program executes, and can be established by the user or after data is read.

In F90 the extensive support for matrix expressions allowglicit loops For example, consider

the calculation onfil z;y;. The language provides at least three ways of performing this calculation.
Assuming the vectors andy are column vectors,

1. sumxy =0
N = size(x)
doi = 1N
sumxy = sum_xy + Xx(i)*y(i)
end do

2. sum xy = sum(x*y)

3. sum xy = dot _product(x,y)

The first method is based on the basic loop construct, and yields the slowest running program of the
three versions. In fact, avoiding tde statement by using implicit loops will almost always lead to faster
running programs. The second, and third statements employ intrinsic functions and/or operators designed
for arrays. In many circumstances, calculation efficiency and clarity of expression must be balanced. In
practice, it is usually necessary to set aside memory to hold subscripted arrays, sushdgsabove,

before they can be referenced or used.

Conditionals. Conditionals test the veracity of logical expressions, and execute blocks of statements
accordingly (see Table 1.2). The most basic operation occurs when we want to execute a series of state-
ments when a logical expression, sest , evaluates tarue . We call that a simple if conditional; the
beginning and end of the statements to be executed whenevaluates tarue are enclosed by special
delimiters, which differ according to language. When only one statement is needed, C++ and Fortran
allow that one statement to end the line that begins with the if conditional. When you want one group
of statements to be executed whest is true and another set to be executed wifdse , you use

the if-else construct. When you want to test a series of logical expressions that are not necessarily com-
plementary, the nested-if construct allows for essentially arbitrarily complex structure to be defined. In
such cases, the logical tests can interlock, thereby creating programs that are quite difficult to read. Here
is where program comments become essential. For example, suppose you want to sum only the positive
numbers less than or equal to 10 in a given sequence. Let’s assume the entire sequence is stored in array
A. In informal pseudocode, we might write

loop across A
if A() > 0 and A()) < = 10 add to sum
end of loop

More formally, this program fragment as a complete pseudocode would be
sum = 0

©2001 J.E. Akin 12

Conditional Pseudocode
if if (test) statement

if if test then
statements
end if

if-else if test then
statements A
else
Statements B
end if

nested if if testl then
statements A
if test2 then
statements B
end if % end of test2
end if

Table 1.2 Syntax of pseudocode conditionals

do i=1,n
if (A() > 0) & (A®) <= 10)
sum = sum + A(i)
end if
end do

Several points are illustrated by this pseudocode example. First of all, the statements that can be included
with a loop can be arbitrary, comprised of simple statements, loops, and conditionals in any order. This
same generality applies to statements within a conditional as well. Secondly, logical expressions can
themselves be quite complicated. Finally, note how each level of statements in the program is indented,
visually indicated the subordination of statements within higher level loops or conditionals. This stylistic
practice lies at the heart sfructured programmingexplicit indication of each statement within the sur-
rounding hierarchy. In modern programming, the structured approach has become the standard because
it leads to greater clarity of expression, allowing others to understand the program more quickly and the
programmer to find bugs more readily. Employing this style only requires the programmer to use the
space key liberally when typing the program. Since sums are computed so often you might expect that a
language would provide an intrinsic function to compute it. For F90 amadiMB you would be correct.

1.4.4 Functions

Functions, which define sub-programs having a well-defined interface to other parts of the program, are
an essential part of programming languages. For, if properly developed, these functions can be included
in future programs, and they allow several programmers to work on complex programs. The function
takes an ordered sequence of messages, objects, or variableargamentsandreturnsto the calling
program a value (or set of values) that can be assigned to an object or variable. Familiar examples of
a function are the mathematical ones: #ire function takes a real-valued argument, uses this value to
calculate the trigonometric sine, and returns that value, which can be assigned to a variable.

y = sin(x)
Note that the argument need not be a variable: a number can be explicitly provided or an expression
can be used. Thusin(2.3) andsin(2*cos(x)) are all valid. Functions may require more than one

argument. For example, tlgan2 function, which computes the arctangent function in such a way that
the quadrant of the calculated angle is unambiguous, needsaihey components of the triangle.

z = atan2(x, y)

Note that the order of the argumentshe x component must be the firstand the number of argu-
ments—bothx andy are needed matter for all functions: The calling program’s argument ordering

©2001 J.E. Akin 13

A Clip(x, L)

Loeen -L

Figure 1.4: Input-output relationship for the function clip). So long agz| < L, this function equals
its argument; for larger values, the output equals the clipping constantmatter how large the input
might be.

and number must agree with those imposed by the function’s definition. Said another way, the inter-
face between the two must agree. Analogous to plugs and electric sockets in the home, a three prong
plug won't fit into a two-hole socket, and, if you have a two-prong plug, you must plug it in the right
way. A function is usually defined separately, outside the body of any program or other function. We
call a program’s extent itscope In MATLAB, a program’s scope is equivalent to what is in a file; in

C and C++, scope is defined by brace pairs; and in Fortran, scope equals what occurs between function
declaration and its correspondiegd statement. Variables are also defined within a program’s and a
function’s scope. What this means is that a variable namaefined within a function is available to all
statements occurring within that function, and different functions can use the same variablgitteoue

any conflict occurringWhat this means is that two functiofis andf2 can each make use of a variable
namedk, and the value of depends on which function is being referred to. In technical terms, the scope

of every variable is limited to its defining function. At first, this situation may seem terribly confusing
(“There are two variables both of which are nam&t); further thought brings the realization that this
convention is what you want. Because each function is to be a redtiqgrogram having a well-defined
interface, execution of the function’s internal statements must not depend on the program that uses it.
This convention becomes especially important when different people write the programs or functions.
Thus, such local variablesthose defined locally within a functieado not conflict, and they are stored

in different memory locations by the compiler or interpreter.

This limited scope convention can be countermanded when you explicitly declare variables to be
global. Such variables are now potentially available to all functions, and each function cannot define a
variable having the same name. For example, you may well want a variable pointedly piartede
available to all functions; you can do so by declaring it to be a global variable. To demonstrate scope,
consider the following simple example. Here, we want to clip the values stored in thexaarad/store
the results in the array.

Main Pseudocode Program Function Pseudocode Definition
! Clip the elements of an array ! function clip(x, edge)
limit = 3 I X - input variable
do i=in ! edge - location of breakpoint
y(@i) = clip(x(i), limit) function clip(x, edge)
end do if abs(x) > edge then
y = sign(x)*edge
else B
end’if
end
The clipping function has the generic form show in Figure 1.4. Thus, values of the argument that are
less thanL in magnitude are not changed, while those exceeding this limit are set equal to the limiting
value. In the program example, note that the name of the array in the calling pregranis the same
as the argument’s name used in the definition of the function. Within the scope of a program or function,
an array and a scalar variable cannot have the same name. In our case, because each variable’s scope is
limited to the function or program definition, no conflict occurs: Each is well defined and the meaning
should be unambiguous. Also note that the second argument has a different name in the program that in

the function. No matter how the arguments are defined, we say that thegssedo the function, with

©?2001 J.E. Akin 14

the function’s variables set equal to values specified in the calling program. These interface rules allows
the function to be used in other programs, which means that we can reuse functions whenever we like!

1.4.5 Modules

Another important programming concept is that of packaging a group of related routines and/or selective
variables into a larger programming entity. In the Ada language they are ¢aldcigeswhile C++

and MATLAB call themclasses F90 has a generalization of this concept that it caltlscalule As we

will see later the F90 module includes the functionality of the C++ classes, as well as other uses such as
defining global constants. Therefore, we will find the use of F90 modules critical to our object-oriented
programming goals. In that context modules provide us with the means to take several routines related
to a specific data type and to encapsulate them into a larger programming unit that has the potential to be
reused for more than one application.

1.4.6 Dynamic Memory Management

From the very beginning, several decades ago, there was a clear need to be able to dynamically allocate
and deallocate segments of memory for use by a program. The initial standards for Fortran did not allow
for this. It was necessary to invoke machine language programs to accomplish that task or to write tools
to directly manage arrays by defining “pseudo-pointers” to manually move things around in memory or to
overwrite space that was no longer needed. It was very disappointing that the F77 standard failed to offer
that ability, although several “non-standard” compilers offered such an option. Beginning with the F90
standard a full set of dynamic memory management abilities is now available within Fortran. Dynamic
memory management is mainly needed for arrays and pointers. Both of these will be considered late,
with a whole chapter devoted to arrays. Both of these entities can be declared as ALLOCATABLE and
later one will ALLOCATE and then DEALLOCATE them. There are also new “automatic arrays” that
have the necessary memory space supplied and then freed as needed.

Pointers are often used in “data structures”, abstract data types, and objects. To check on the status
of such features one can invoke the ALLOCATED intrinsic and use ASSOCIATED to check on the
status of pointers and apply NULLIFY to pointers that need to be freed or initialized. Within F90
allocatable arrays cannot be used in the definitions of derived types, abstract data types, or objects.
However, allocatable pointers to arrays can be used in such definitions. To assist in creating efficient
executable codes, entities that might be pointed at by a pointer must have the TARGET attribute.

Numerous examples of dynamic memory management will be seen later. Persons that write compilers
suggest that, in any language, it is wise to deallocate dynamic memory in the reverse order of its creation.
The F90 language standard does not require that procedure but you see that advice followed in most of
the examples.

1.5 Program evaluation and testing

Your fully commented program, written with the aid of editor, must now come alive and be trans-

lated into another language that more closely matches computer instructions; it rexstbgecr run.
Statements expressed inAVLAB, Fortran, or C++ may not directly correspond to computational instruc-
tions. However, the Fortran syntax was designed to more clearly match mathematical expressions. These
languages are designed to allow humans to define computations easily and also allow easy translation.
Writing programs in these languages provides some degpasriatbility: A program can be executed on

very different computers without modification. So-calestembly languageslow more direct expres-

sion of program execution, but are very computer specific. Programmers that write in assembly language
must worry about the exquisite details of computer organization, so much so that writing of what the
computation is doing takes much longer. What they produce might run more rapidly that the same com-
putation expressed in Fortran, for example, but no portability results and programs become incredibly
hard to debug.

Programs become executable machine instructions in two basic ways. They arntstipeetedor
compiled In the first case, an interpreter reads your program and translates it to executable instructions
“on the fly.” Because interpreters essentially examine programs on a line-by-line basis, they usually allow
instructions accept typed user instructions as well as fully written programsLA& is an example of

2001 J.E. Akin 15
©

an interpretef. It can accept typed commands created as the user thinks of them (plot a graph, see that
a parameter must have been typed incorrectly, change it, and replot, for example) or entire programs.
Because interpreters examine programs locally (line-by-line), program execution tends to be slower than
when a compiler is used.

Compilers are programs that take your program in its entirety and produce an executable version of
it. Compiler output is known as agxecutabldile that, in UNIX for example, can become a command
essentially indistinguishable from others that are available. C++ is an example of a language that is
frequently compiled rather than interpreted. Compilers will produce much more efficient (faster running)
programs than interpreters, but if you find an error, you must edit and re-compile before you can attempt
execution again. Because compilation takes time, this cycle can be time-consuming if the program is
large.

Interpreters are themselves executable files written in compiled languages:AB is written in
C. Executable programs produced by compilers are stand-alone prodesergthing—user input and
output, file reading, ete- must be handled by the user’s program. In an interpreter, you can supplement a
program’s execution by typed instructions. For example, in an interpreter you can type a simple command
to make the variablea equal to 1; in a compiled program, you must include a program that asks for the
value ofa. Consequently, users frequently write programs in the context of an interpreter, understand
how to make the program better by interacting with it, and then re-express it in a compiled language.

Both interpreters and compilers make extensive use of what are kndilneetg commands or func-
tions. A natural example of a library function is tsie function: Users typically do not want to program
explicitly the computation of the trigonometric sine function. Instead, they want to be able to pull it “off
the shelf” and use as need be. Library modules are just programs written in a computer language like
you would write. Consequently, both interpreters and compilers allow user programs to become part
of the library, which is usually written by many programmers over a long period of time. It is through
modules available in a library that programming teams cooperate. Library modules tend to be more ex-
tensive and do more things in an interpreter. For exampleruMB provides a program that produces
pseudo-three-dimensional plots of functions. Such routines usually do not come with a compiler, but
may be purchased separately from graphics programming specialists. For compiled languages, we refer
to linking the library routines to the user’s program (in interpreters, this happens as a matter of course). A
linker is a program that takes modules produced by the compiler, be they yours or others, associates the
modules, and produces the executable file we mentioned earlier. Most C++ compilers “hide” the linking
step from you; you may think you are typing just the command to compile the program, but it is actually
performing that step for you. When you are compiling a module not intended for stand-alone execution,
a compiler option that you type can prevent the compiler from performing the linking step.

Debuggingis the process of discovering and removing program errors. Two main types of errors
occur in writing programs: what we would generally term “typos” and what are design errors. The first
kind may be readily found (where is the functism ?) or more subtle (you typaa instead ofa for a
variable’s name anda also exists!). The second kind of error can be hard or subtle to find. The main
components of this process are

1. Search the program module by eye as you do a “mental run through” of its task. This kind of error
searching begins when you first think about program organization, and continues as you refine the
program. Why write a program that is logically flawed?

2. If written in a compiled language, compile the program to find syntax errors or warnings about
unused or undefined variables. If in an interpreted language, attempt preliminary execution to
obtain similar error messages. Linking also can locate modules or libraries that are improperly
referenced.

3. Running the executable file with typical data sets often causes the program te-ablwatsh
word that expresses the situation where the program goes crazy and ceases te-laeithtiee
system to supply an error message, such as division by zero. Error messagdedp locate the
programming error.

TThis statement is only partially true. AtLAB does have some features of a compiler, like looking ahead to determine if
interface errors exist with respect to functions called by the main program.

©2001 J.E. Akin 16

Easy errors to find arsyntacticerrors: You have violated the language’s rules of what a well-formed
program must be. Usually, the interpreter or compiler complain bitterly on encountering a syntax error.
Compilers find these at compile time (when the program is compiled), interpreters at run time. Design
errors are only revealed when we supply the program with data. The programmer should design test data
that exercises each of the program’s valid operations. Invalid user input (asking for the logarithm of a
negative number, for example) should be caught by the program and warning messages sent to the user.

The previous description of generic programming languages indicates why finding bugs can be quite
complicated. Programs can exhibit quite complex behaviors, and tracing incorrect behaviors can be
correspondingly difficult. One often hears the (true) statement “Computers do what we say, not what
we want.” Users frequently want computers to be smart, fixing obvious design (mental) errors because
they obviously conflict with what we want. However, this situation is much like what the novelist faces.
Inexact meaning can confuse the reader; he or she does not have a direct pathway to the novelist's mind.
As opposed to the novelist, extensive testing of your program can detect such errors and make your
program approach perfection. Many operating systems supply interaetiveggermprograms that can
trace the execution of a program in complete detail. They can display the values of any variable, stop
at selected positions for evaluation, execute parts of the code in a statement-by-statement fashion, etc.
These can be very helpful in finding difficult-to-locate bugs, but they still cannot read your mind.

Be that as it may, what can the programmer do when the program compiles (no syntactic errors),
doesn't cause system error messages (no dividing by zero), but the resuitt eoerect? The simplest
approach is to include extra statements in your program, referred to as debugging statements, that display
(somewhat verbosely) values of internal variables. For example, in a loop you would print the value of the
loop index and all variables that the loop might be affecting. Because this output can be voluminous, the
most fruitful approach is to debug smaller problems. With this debugging information, you can usually
figure out the error, correct ignd change the comments accordingly. Without the latter, your program
and your internal documentation are out-of-sync.

Once debugged, you could delete the debugging statements you added. A better approach is to just
hide them. You can do this two ways: Comment them out or encase them in a conditional that is true when
the program is in “debugging mode.” The commenting approach completely removes the debugging
statements from the program execution stream, and allows you to easily put them back if further program
elaborations result in errors. The use of conditionals does put an overhead on computational efficiency,
but usually a small one.

1.6 Program documentation

Comments inside a program are intended to help you and others understand program design and how
it is organized. Frequently, comments describe what each variable means, how program execution is to
proceed, and what each module’s interface might be (what are the expected inputs and their formats, and
what outputs are produced). Program comments occur in the midst of the program’s source, and tem-
porarily interrupts the highly restricted syntax of most programming languages. Comments are entirely
ignored by the interpreter or compiler, and are allowed to enhance program clarity for humans.

Documentatiorincludes program comments, but also includes external prose that describes what the
program does, how the user interface controls program behavior, and how the display of results means.
Making an executable program available to users does not help them understand how to use it. In UNIX,
all provided commands are accompanied by what are referredirmasal pagesconcise descriptions
of what the program does, all user options, and descriptions of what error messages Rregreans
are useless without such documentatibtany programs provide such documentation whenever the user
types something that clearly indicates a lack of knowledge about how to use the program. This kind
of documentation must also be supplemented by prose that a user can read. Professional programmers
frequently write the documentation as the program is being designed. This simultaneous development of
the program and documentation of how it is used often uncovers user interface design flaws.

©2001 J.E. Akin 17

1.7 Object Oriented Formulations

The above discussion of subprograms follows the older programming style where the emphasis is placed
on the procedures that a subprogram is to apply to the supplied data. Thus, it is referrpbtzedsral
programming The alternate approach focuses on the data and its supporting functions, and is known as
an object orientecapproach and is the main emphasis of this work. It also generalizes the concept of
data types and is usually heavily dependent on user defined data types and their extension to abstract data
types. These concepts are sketched in Fig. 1.5.

data — Procedure e data

a) Procedural Based Programming

message =P Object — data

b) Object-Oriented Programming

Figure 1.5 Two Approaches to Programming

The process or creating an “object-oriented” (OO) formulation involves at least three stages: Object-
Oriented Analysis (OOA), Object-Oriented Design (OOD), and Object-Oriented Programming (OOP).
Many books have been written on each of these three subjects. Formal graphical standards for represent-
ing the results of OOA and OOD have been established and are widely used in the literature. Here the
main emphasis will be placed on OOP on the assumption that the two earlier stages have been completed.
In an effort to give some level of completeness, summaries of OOA and OOD procedures are given in
Tables 1-1 and 1-2, respectively. Having completed OOA and OOD studies one must select a language
to actually implement the design. More than 100 objected-oriented languages are in existence and use
today. They include “pure” OO languages like Crisp, Eiffel, Rexx, Simula, Smalltalk, etc. and “hybrid”
OO languages like C++, F90 , Object Pascal, etc. In which of them should you invest your time? To get
some insight into answers to this question we should study the advice of some of the recognized leaders
in the field. In his 1988 book on OO software construction B. Myers listed seven steps necessary to
achieve object-orientedness in an implementation language. They are summarized in Table 1-3 and are
all found to exist in F90 and F95 . Thus we proceed with F90 as our language of choice. The basic F90
procedures for OOP will be illustrated in some short examples in Chapter 3 after covering some prelim-
inary material on abstract data types in Chapter 2. Additional OOP applications will also be covered in
later chapters.

©2001 J.E. Akin 18

Table 1-1. OO Analysis Summary

Find objects and classes:

Create an abstraction of the problem domain.

Give attributes, behaviors, classes, and objects meaningful names.

Identify structures pertinent to the system’s complexity and responsibilities.

Observe information needed to interact with the system, as well as information to be stored.
Look for information re-use; are there multiple structures; can sub-systems be inherited?

Define the attributes::

e Select meaningful names.

e Describe the attribute and any constraints.

e What knowledge does it possess or communicate?
e Putitin the type or class that best describes it.

e Select accessibility as public or private.

o |dentify the default, lower and upper bounds.

¢ |dentify the different states it may hold.

e Note items that can either be stored or re-computed.

Define the behavior:

e Give the behaviors meaningful names.

e What questions should each be able to answer?

e What services should it provide?

e Which attribute components should it access?

e Define its accessibility (public or private).

e Define its interface prototype.

e Define any input/output interfaces.

o Identify a constructor with error checking to supplement the intrinsic constructor.
o Identify a default constructor.

Diagram the system:

e Employ an OO graphical representation such as the Coad/Yourdon method or its extension by
Graham.

©2001 J.E. Akin 19

Table 1-2. OO Design Summary

e Improve and add to the OOA results during OOD.

¢ Divide the member functions into constructors, accessors, agents and servers.
e Design the human interaction components.

e Design the task management components.

e Design the data management components.

¢ |dentify operators to be overloaded.

e |dentify operators to be defined.

¢ Design the interface prototypes for member functions and for operators.
e Design code for re-use through “kind of” and “part of” hierarchies.

¢ Identify base classes from which other classes are derived.

e Establish the exception handling procedures for all possible errors.

Table 1-3. 7 Steps to Object-Orientedness (B. Myer, 1988)

. Object-based modular structure :

e Systems are modularized on the basis of their data structure (in F90).

. Data Abstraction:

¢ Objects should be described as implementations of abstract data types (in F90).
. Automatic memory management:

e Unused objects should be deallocated by the language system (mostin F9O0, in F95).

. Classes:

e Every non-simple type is a module, and every high-level module is a type (in F90).

. Inheritance:

¢ A class may be defined as an extension or restriction of another (in F90).
. Polymorphism and dynamic binding :

e Entities are permitted to refer to objects of more than one class and operations can have different
realizations in different classes (partially in F90/F95, expected in Fortran 2000).

. Multiple and repeated inheritance :

e Can declare a class as heir to more than one class, and more than once to the same class (in F90).

©2001 J.E. Akin 20

1.8 Exercises

1

Checking trigonometric identities

We know that the sine and cosine functions obey the trigonometric ideiiity + cos?8 = 1

no matter what value df is used. Write a pseudocode, omWM.AB , or F90 program that checks

this identity. Let it consist of a loop that increments acrdssqually spaced angles betweeand

m, and calculates the quantity in question, printing the angle and the result. Test your program for
several values oN. (Later we will write a second version of this program that does not contain
anyanalysis loops, using insteadAviLAB's, or F90's, ability to calculate functions of arrays.)

Newton-Raphson algorithm

A commonly used numerical method of solving the equatfé¢m) = 0 has its origins with the
beginnings of calculus. Newton noted that the slope of a function tended to crasstiienear a
function’s position of zero value (calledraot).

A f¥)
b 1(x)
\ E E > X
N X+1 X

Because the function’s slope at some paipequals its derivativg’ (z;), the equation of the line
passing througlf (z;) is f'(z;)z + (f(;ri) — f’(mi)mi). Solving for the case when this expression
equals the next trial roat; , ; .

f(i)

Tirq = @5 —
i—+1 i fl(xz)

The algorithm proceeds by continually applying this iterative equation until the error is “small.”

The definition of “small” is usually taken to mean that the absolute relative difference between

successive iterates is less than some tolerance val@i@aphson extended these concepts to an

array of functions.)

(&) In pseudocode, write a program that performs the Newton-Raphson algorithm. Assume that
functions that evaluate the function and its derivative are available. What is the most conve-
nient form of loop to use in your program?

(b) Translate your pseudocode into F90, onAB, and apply your program to the simple
function f(z) = €2* — 5z — 1. Use the functional expressions directly in your program or
make use of functions.

Game of Life pseudocode
Develop a pseudocode outline for the main parts of the “Game of Life” which was discussed earlier
and shown in Fig. 1.3. Include pseudocode for a function to compute the next generation.

2001 J.E. Akin 21
©

Chapter 2

Data Types

Any computer program is going to have to operate on the available data. The valid data types that are
available will vary from one language to another. Here we will examine the intrinsic or built-in data types,
user-defined data types or structures and, finally, introduce the concept of the abstract data type which
is the basic foundation of object-oriented methods. We will also consider the precision associated with
numerical data types. The Fortran data types are listed in Table 2—-1. Such data can be used as constants,
variables, pointers and targets.

Table 2—-1. F90/95 Data Types and Pointer Attributes

Data Option

Intrinsic Derived
[Components of intrinsic type and/or

| previously declared derived types.]

| |
Character Logical Numeric

\
Floating| Point Integer |

| (Default Precision)

| Selected-Int-Kind

|
‘Complex R‘eal Do‘uble Precision
gDefauIt Precision) (Default Precision) [Obsolete]
elected-Real-Kind’s ~ Selected-Real-Kind

2.1 Intrinsic Types

The simplest data type is th©GICALtype which has the Boolean values of eithiene. or .false.

and is used for relational operations. The other non-numeric data typedBIARACTERT he sets of valid
character values will be defined by the hardware system on which the compiler is installed. Character sets
may be available in multiple languages, such as English and Japanese. There are international standards
for computer character sets. The two most common ones are the English character sets defined in the
ASCIl and EBCDIC standards that have been adapted by the International Standards Organization (ISO).
Both of these standards for defining single characters include the digits (0 to 9), the 26 upper case letters
(Ato Z), the 26 lower case letters (ato z), common mathematical symbols, and many non-printable codes
known as control characters. We will see later that strings of characters are still referred to as being of
the CHARACTERype, but they have a length that is greater than one. In other languages such a data type
is often called astring. [While not part of the F95 standard, the ISO Committee created a user-defined
type known as thésO _ VARIABLE_LENGTH. STRINGWwhich is available as a F95 source module.]

©2001 J.E. Akin 23

For numerical computations, numbers are represented as integers or decimal values Kloatings
point number®r floats The former is called aNTEGERtype. The decimal values supported in Fortran
are theREALandCOMPLEXypes. The range and precision of these three types depends on the hardware
being employed. At the present, 1999, most computers have 32 bit processors, but some offer 64 bit
processors. This means that the precision of a calculated result from a single program could vary from
one brand of computer to another. One would like to have a portable precision control so as to get
the same answer from different hardware; whereas some languages, like C++, specify three ranges of
precision (with specific bit widths). Fortran provides default precision types as well as two functions to
allow the user to define the “kind” of precision desired.

Table 2—2. Numeric Types on 32 Bit Processors

Significant
Type Bit Width Digits Common Range
integer 16 10 —-32,768t0 32,767
real 32 6 —10%" to 1037
double precisioh 64 15 —102°7 to 10397
complex 2@32 2@6 two reals

tobsolete in F90, seselected _real _kind

Still, it is good programming practice to employ a precision that is of the default, double, or quad pre-
cision level. Table 2-2 lists the default precisions for 32 bit processors. The first three entries correspond
to typesint, float, anddouble respectively, of C++. Examples of F90 integer constants are

-32 0 4675123 24 _short 24 _long

while typical real constant examples are

0.123456 1.234567e+2 0.0 0.3

-3. . _double
7.6543e+4 _double 0.23567 _quad 0.3d0

In both cases, we note that it is possible to impose a user-defined precision kind by appending an under-
score () followed by the name of the integer variable that gives the precision kind number. For example,
one could define

long = selected _int _kind(9)

to denote an integer in the range-ef0° to 10°, while
double = selected _real _kind(15,307)

defines a real with 15 significant digits with an exponent range3if7. Likewise, a higher precision
real might be defined by the integer kind

quad = selected _real _kind(18,4932)

to denote 18 significant digits over the exponent range4%32. If these kinds of precision are available
on your processors, then the F90 types of “integer (long),” “real (double),” and “real (quad)” would
correspond to the C++ precision types of “long int,” “double,” and “long double,” respectively. If the
processor cannot produce the requested precision, then it returns a negative number as the integer kind
number. Thus, one should always check that the kind (i.e., the above integer values of long, double, or
quad) is not negative, and report an exception if it is negative.

The old F77 intrinsic type obOUBLE PRECISIONas been declared obsolete, since it is now easy
to set any level of precision available on a processor. Another way to always define a double precision
real on any processor is to use the “kind” function such as

double = kind(1.0d0)

where the symbold’ is used to denote the 1/O of a double precision real. For completeness it should be
noted that it is possible on some processors to define different kinds of character types, such as “greek”
or “ascii”, but in that case, the kind value comes before the underscore and the character string such as:
ascii _"astring”.

2001 J.E. Akin 24
©

1] Module Math _Constants I Define double precision math constants

2 implicit none

3 I INTEGER, PARAMETER :: DP = SELECTED _REAL_KIND (15,307)

4 INTEGER, PARAMETER :: DP = KIND (1.d0) ! Alternate form

5] real(DP), parameter:: Deg _Per _Rad = 57.295779513082320876798155 _DP
(75 real(DP), parameter:: Rad _Per _Deg = 0.017453292519943295769237 _DP

8] real(DP), parameter: e _Value = 2.71828182845904523560287 _DP

9] real(DP), parameter:: e _Recip = 0.3678794411714423215955238 _DP
10] real(DP), parameter:: e _Squared = 7.389056098930650227230427 _DP
11] real(DP), parameter:: Logl0 _of _e = 0.4342944819032518276511289 _DP
12

13] real(DP), parameter:: Euler = 0.5772156649015328606 _DP

14] real(DP), parameter:: Euler _Log = -0.5495393129816448223 _DP

15] real(DP), parameter:: Gamma = 0.577215664901532860606512 _DP
16] real(DP), parameter:: Gamma _Log = -0.549539312981644822337662 _DP
17] real(DP), parameter:: Golden _Ratio = 1.618033988749894848 _DP

18

19] real(DP), parameter:: Ln _2 = 0.6931471805599453094172321 _DP
20] real(DP), parameter:: Ln _10 = 2.3025850929940456840179915 _DP
%% real(DP), parameter:: Log10 _of _2 = 0.3010299956639811952137389 _DP
23] real(DP), parameter:: pi _Value = 3.141592653589793238462643 _DP
24] real(DP), parameter:: pi _Ln = 1.144729885849400174143427 _DP
25] real(DP), parameter:: pi _Log10 = 0.4971498726941338543512683 _DP
26] real(DP), parameter:: pi _Over _2 = 1.570796326794896619231322 _DP

27] real(DP), parameter:: pi _Over _3 = 1.047197551196597746154214 _DP

28] real(DP), parameter:: pi _Over _4 = 0.7853981633974483096156608 _DP
29] real(DP), parameter:: pi —Recip = 0.3183098861837906715377675 _DP
30] real(DP), parameter:: pi _Squared = 9.869604401089358618834491 _DP
31] real(DP), parameter:: pi _Sq_Root = 1.772453850905516027298167 _DP

32

33] real(DP), parameter:: Sq _Root _of _2 = 1.4142135623730950488 _DP

34] real(DP), parameter:: Sq _Root _of _3 = 1.7320508075688772935 _DP

35

%(73 End Module Math _Constants

38] Program Test

39 use Math _Constants ! Access all constants

40 real :: pi | Define local data type

41 print *, 'pi _Value: ', pi _Value ! Display a constant

42 pi = pi _Value; print *, 'pi = ’, pi ! Convert to lower precision

43] End Program Test ! Running gives:

44 I pi _Value: 3.1415926535897931 I pi = 3.14159274

Figure 2.1 Defining Global Double Precision Constants

To illustrate the concept of a defined precision intrinsic data type, consider a program segment to
make available useful constants suclpag3.1415..) or Avogadro’s numbe(6.02 ... x 10%3). These
are real constants that should not be changed during the use of the program. In F90, an item of that nature
is known as PARAMETERIN Fig. 2.1, a selected group of such constants have been declared to be of
double precision and stored invlODULEBramedViath _Constants . The parameters in that module can
be made available to any program one writes by including the statemmnthiath _constants " atthe
beginning of the program segment. The figure actually ends with a short sample program that converts
the tabulated value gfi (line 23) to a default precision real (line 42) and prints both.

2.2 User Defined Data Types

While the above intrinsic data types have been successfully employed to solve a vast number of pro-
gramming requirements, it is logical to want to combine these types in some structured combination
that represents the way we think of a particular physical object or business process. For example, as-
sume we wish to think of a chemical element in terms of the combination of its standard symbol, atomic
number and atomic mass. We could create such a data structure type and assign it a nelmeenisay

cal _element , so that we can refer to that type for other uses just like we might declare a real variable.
In F90 we would define the structure witlr&PEconstruct as shown below (in lines 3-7):

[1] program create _a_type
[2] implicit none
3 type chemical _element I a user defined data type
4 character (len=2) :: symbol
5 integer ;- atomic _number
6 real :: atomic _mass

2001 J.E. Akin 25
©

[7] end type

Having created the new data type, we would need ways to define its values and/or ways to refer to any of
its components. The latter is accomplished by using the component selection symbol “%”. Continuing
the above program segment we could write:

8 type Echemical _elementg ;> argon, carbon, neon ! elements

9 type (chemical _element) :: Periodic _Table(109) I an array
10 real I mass ! a scalar
11

12 carbon%atomic _mass = 12.010 | set a component value
13 carbon%atomic _number = 6 | set a component value
%451 carbon%symbol ="c" | set a component value

%g argon = chemical _element ("Ar", 18, 26.98) ! construct element

18 read *, neon I get "Ne" 10 20.183

19

20 Periodic _Table(5) = argon ! insert element into array

21 Periodic _Table(17) = carbon ! insert element into array

%g Periodic _Table(55) = neon ! insert element into array

24 mass = Periodic _Table(5) % atomic _mass ! extract component
25

26 print *, mass | gives 26.9799995

27 print *, neon ! gives Ne 10 20.1830006

28 print *, Periodic _Table(17) I gives C 6 12.0100002
29] end program create _a_type

In the above program segment, we have introduced some new concepts:

define argon, carbon and neon to be of¢hemical _element type (line 7).
define an array to contain 1@8emical _element types (line 8).

used the selector symbol, %, to assign a value to each of the components of the carbon structure
(line 15).

used the intrinsic “structure constructor” to define the argon values (line 15). The intrinsic construct
or initializer function must have the same name as the user-defined type. It must be supplied with
all of the components, and they must occur in the order that they were definedriviRBblock.

read in all the neon components, in order (line 17). [The ** means that the system is expected
to automatically find the next character, integer and real, respectively, and to insert them into the
components ofieon .]

inserted argon, carbon and neon into their specific locations in the periodic table array (lines 19—
21).

extracted thetomic _mass of argon from the corresponding elementinpeeodic _element
array (line 23).

print the real variablemass (line 25). [The “*’ means to use a default number of digits.]
printed all components of neon (line 26). [Using a default number of digits.]

printed all the components of carbon by citing its reference in the periodic table array (line 27).
[Note that the printed real value differs from the value assigned in line 12. This is due to the way
reals are represented in a computer, and will be considered elsewhere in the text.]

A defined type can also be used to define other data structures. This is but one small example of the
concept of code re-use. If we were developing a code that involved the history of chemistry, we might
use the above type to create a type calliestioryas shown below.

type (chemical _element) 1 oxygen

type history I a second type using the first
character (len=31) . element _name
integer . o year ~ _found
type (chemical _element) :: chemistry

©2001 J.E. Akin 26

end type history

type (history) :: Joseph _ Priestley | Discoverer
oxygen = chemical _element ("O", 76, 190.2) ! construct element
Joseph _Priestley = history ("Oxygen", 1774, oxygen) ! construct

print *, Joseph _Priestley ! gives Oxygen 1774 O 76 1.9020000E+02

Shortly we will learn about other important aspects of user-defined types, such as how to define operators
that use them as operands.

2.3 Abstract Data Types

Clearly, data alone is of little value. We must also have the means to input and output the data, subpro-
grams to manipulate and query the data, and the ability to define operators for commonly used procedures.
The coupling or encapsulation of the data with a select group of functions that defines everything that can
be done with the data type introduces the concept of an abstract data type (ADT). An ADT goes a step
further in that it usually hides from the user the details of how functions accomplish their tasks. Only
knowledge of input and output interfaces to the functions are described in detail. Even the components
of the data types are kept private.

The wordabstractin the termabstract data typés used to: 1) indicate that we are interested only
in the essential features of the data type, 2) to indicate that the features are defined in a manner that
is independent of any specific programming language, and 3) to indicate that the instances of the ADT
are being defined by their behavior, and that the actual implementation is secondary. An ADT is an
abstraction that describes a set of items in terms of a hidden or encapsulated data structure and a set of
operations on that data structure.

Previously we created user-defined entity types such ashtimical _element . The primary dif-
ference between entity types and ADTs is that all ADTs include methods for operating on the type. While
entity types are defined by a name and a list of attributes, an ADT is described by its name, attributes,
encapsulated methods, and possibly encapsulated rules.

Object-oriented programming is primarily a data abstraction technique. The purpose of abstraction
and data hiding in programming is to separate behavior from implementation. For abstraction to work,
the implementation must be encapsulated so that no other programming module can depend on its imple-
mentation details. Such encapsulation guarantees that modules can be implemented and revised indepen-
dently. Hiding of the attributes and some or all of the methods of an ADT is also important in the process.
In F90 thePRIVATE statement is used to hide an attribute or a method; otherwise, both will default to
PUBLIC. Public methods can be used outside the program module that defines an ADT. We refer to the
set of public methods or operations belonging to an ADT as the public interface of the type.

The user-defined data type, as given above, in F90 is not an ADT even though each is created with
three intrinsic methods to construct a value, read a value, or print a value. Those methods cannot modify
a type; they can only instantiate the type by assigning it a value and display that value. (Unlike F90, in
C or C++ a user-defined type, or “struct”, does not have an intrinsic constructor method, or input/output
methods.) Generally ADTs will have methods that modify or query a type’s state or behavior.

From the above discussion we see that the intrinsic data types in any language (such as complex,
integer and real in F90) are actually ADTs. The system has hidden methods (operators) to assign them
values and to manipulate them. For example, we know that we can multiply any one of the numerical
types by any other numerical type.

We do not know how the system does the multiplication, and we don’t care. All computer languages
provide functions to manipulate the intrinsic data types. For example, in F90 a square root function,
namedsqrt, is provided to compute the square root of a real or complex number. From basic mathematics
you probably know that two distinctly different algorithms must be used and the choice depends on the
type of the supplied argument. Thus, we call Huyet function a generic function since its single name,
sqrt, is used to select related functions in a manner hidden from the user. In F90 you can not take the
square root of an integer; you must convert it to a real value and you receive back a real answer. The

2001 J.E. Akin 27
©

ADT name

‘ Public attributes

‘ Public ADT with private attributes

‘ Private attributes ‘

‘ Public members H—}

‘ Private members ‘

Component Type Name ‘
Messe:;ge ?;Sg Member Name f—
Seegsgéz R-?-;Sieve Member Name —
Resce?\ée' ME)I_S;)fieed Member Name <>

Figure 2.2 Graphical Representation of ADTs

above discussions of the methods (routines) that are coupled to a data type and describe what you can
and can not do with the data type should give the programmer good insight into what must be done to
plan and implement the functions needed to yield a relatively complete ADT.

chemical _element ADT
character synbol
i nt eger at om c_nunber
r eal at om c_nmss
chemi cal _el ement chem cal _el enment H
]

Figure 2.3 Representation of the Public Chemic@llement ADT

Itis common to have a graphical representation of the ADTs and there are several different graphical
formats suggested in the literature. We will use the form shown in Fig. 2.4 where a rectangular box begins
with the ADT name and is followed by two partitions of that box that represent the lists of attribute data
and associated member routines. Items that are available to the outside world are in sub-boxes that cross
over the right border of the ADT box. They are the parts of the public interface to the ADT. Likewise
those items that are strictly internal, or private, are contained fully within their respective partitions of
the ADT box. There is a common special case where the name of the data type itself is available for
external use, but its individual attribute components are not. In that case the right edge of the private
attributes lists lie on the right edge of the ADT box. In addition, we will often segment the smallest box
for an item to give its type (or the most important type for members) and the name of the item. Public

©2001 J.E. Akin 28

member boxes are also supplemented with an arrow to indicate which take in informationdr send
out information {(->). Such a graphical representation of the previchegnical _element ADT, with
all its items public, is shown in Fig. 2.4.

The sequence of numbers known as Fibonacci numbers is the set that begins with one and two and
where the next number in the set is the sum of the two previous numbers (1, 2, 3, 5, 8, 13, ...). A primarily
private ADT to print a list of Fibonacci numbers up to some limit is represented graphically in Fig. 2.5.

Fibonacci_number ADT

integer low

integer high

integer limit

Fibonacci_number | Fibonacci_number &

Fibonacci_number Print —p
| Fibonacci_number] Add

Figure 2.4 Representation of a Fibonacdiumber ADT

2.4 Classes

A class is basically the extension of an ADT by providing additional member routines to secve-as
structors Usually those additional members should includge&ault constructomhich has no argu-
ments. Its purpose is to assure that the class is created with acceptable default values assigned to all
its data attributes. If the data attributes involve the storage of large amounts of data (memory) then one
usually also providesdestructormember to free up the associated memory when it is no longer needed.
F95 has an automatic deallocation feature which is not present in F90 and thus we will often formally
deallocate memory associated with data attributes of classes.

As a short example we will consider an extension of the above Fibondkanber ADT. The ADT
for Fibonacci numbers simply keeps up with three numbers (low, high, and limit). Its intrinsic ini-
tializer has the (default) name Fibonacci. We generalize that ADT to a class by adding a constructor
named new Fibonacci number. The constructor accepts a single number that indicates how many
values in the infinite list we wish to see. It is also a default constructor because if we omit the one
optional argument it will list a minimum number of terms set in the constructor. The graphical repre-
sentation of the FibonaccNumber class extends Fig. 2.4 for its ADT by at least adding one public
constructor, called newFibonacci number, as shown in Fig. 2.5. Technically, it is generally accepted
that a constructor should only be able to construct a specific object once. This differs from the intrin-
sic initializer which could be invoked multiple times to assign different values to a single user-defined
type. Thus, an additional logical attribute has been added to the previous ADT to allow the constructor,
new_ Fibonacci number, to verify that it is being invoked only once for each instance of the class. The
coding for this simple class is illustrated in Fig. 2.6. There the access restrictions are given on lines 4, 5,
and 7 while the attributes are declared on line 8 and the member functions are given in lines 13-33. The
validation programis in lines 36—42, with the results shown as comments at the end (lines 44-48).

©2001 J.E. Akin 29

OO~ T WN -

Fibonacci_number Class

integer low
integer high
integer limit
logical exists = .false.
Fibonacci_number |new_Fibonacci_number [
Fibonacci_number Print o
Fibonacci_number Add

Fibonacci_ number | Fibonacci_number

Figure 2.5 Representation of a Fibonacdiumber Class

! Fortran 90 OOP to print list of Fibonacci Numbers

Module class _Fibonacci _Number ! file: Fibonacci —Number.f90
implicit none
public :: Print ! member access
private :: Add ! member access
type Fibonacci — Number | attributes
private
Integer :: low, high, limit | state variables & access
end type Fibonacci _Number
Contains I member functionality
function new _Fibonacci _Number (max) result (num) ! constructor
implicit none
integer, optional I max
type (Fibonacci _Number) :: num
num = Fibonacci _Number (0, 1, 0) ! intrinsic
if (present(max)) num = Fibonacci _Number (0, 1, max) ! intrinsic
numYexists = .true.
end function new _Fibonacci _Number
function Add (this) result (sum)
implicit none
type (Fibonacci _Number), intent(in) :: this ! cannot modify
integer :

:sum
sum = this%low + this%high ; end function add ! add components

subroutine Print (num)

implicit none
type (Fibonacci —Number), intent(inout) :: num I will modify
integer o, sum ! Ioo(f)s
if (num%limit < 0) return ! no data to print
print *, 'M Fibonacci(M)’ ! header
do j = 1, num%limit ! loop over range
sum = Add(num) ; print *, j, sum I sum and print
num%low = num%high ; num%high = sum ! update
end do ; end subroutine Print
End Module class _Fibonacci _Number
program Fibonacci ** The main Fibonacci program
implicit none
use class _Fibonacci _Number ! inherit variables and members
integer, parameter cend = 8 ! unchangeable
type (Fibonacci —Number) :: num
num = new _Fibonacci _Number(end) ! manual constructor
call Print (num) | create and print list
end program Fibonacci ! Running gives:
I M Fibonacci(M) ; 1M Fibonacci(M)
11 ;1 58
122 ;16 13
' 33 ;721
! 45 ;1 8 34

Figure 2.6 A Simple Fibonacci Class

©2001 J.E. Akin 30

2.5 Exercises

1. Create a module of global constants of common a) physical constants, b) common units conversion
factors.

2. Teams in a Sports League compete in matches that result in a tie or a winning and loosing team.
When the result is not a tie the status of the teams is updated. The winner is declared better that the looser
and better than any team that was previously bettered by the loser. Specify this process by ADTs for
the League, Team, and Match. Include a logical member funétiarbetter _than which expresses
whether a team is better than another.

©2001 J.E. Akin 31

Chapter 3

Object Oriented Programming Concepts

3.1 Introduction

The use of Object Oriented (OO) design and Object Oriented Programming (OOP) are becoming in-
creasingly popular. Thus, it is useful to have an introductory understanding of OOP and some of the
programming features of OO languages. You can develop OO software in any high level language, like
C or Pascal. However, newer languages such as Ada, C++, and F90 have enhanced features that make
OOP much more natural, practical, and maintainable. C++ appeared before F90 and currently, is prob-
ably the most popular OOP language, yet F90 was clearly designed to have almost all of the abilities of
C++. However, rather than study the new standards many authors simply refer to the two decades old
F77 standard and declare that Fortran can not be used for OOP. Here we will overcome that misinformed
point of view.

Modern OO languages provide the programmer with three capabilities that improve and simplify
the design of such programsncapsulation, inheritancgnd polymorphism(or generic functionality).
Related topics involvebjects, classesnddata hiding An objectcombines various classical data types
into a set that defines a new variable type, or structurdassunifies the new entity types and supporting
data that represents its state with routines (functions and subroutines) that access and/or modify those
data. Every object created from a class, by providing the necessary data, is cailhsthaceof the
class. In older languages like C and F77, the data and functions are separate entities. An OO language
provides a way to couple or encapsulate the data and its functions into a unified entity. This is a more
natural way to model real-world entities which have both data and functionality. The encapsulation is
done with a “module” block in F90, and with a “class” block in C++. This encapsulation also includes
a mechanism whereby some or all of the data and supporting routines can be hidden from the user. The
accessibility of the specifications and routines of a class is usually controlled by optional “public” and
“private” qualifiers. Data hidingallows one the means to protect information in one part of a program
from access, and especially from being changed in other parts of the program. In C++ the default is
that data and functions are “private” unless declared “public,” while F90 makes the opposite choice for
its default protection mode. In a F90 “module” it is the “contains” statement that, among other things,
couples the data, specifications, and operators before it to the functions and subroutines that follow it.

Class hierarchies can be visualized when we realize that we can employ one or more previously
defined classes (of data and functionality) to organize additional classes. Functionality programmed into
the earlier classes may not need to be re-coded to be usable in the later classes. This mechanism is called
inheritance For example, if we have defined &mployee _class , then aManager _class would
inherit all of the data and functionality of an employee. We would then only be required to add only
the totally new data and functions needed for a manager. We may also need a mechanism to re-define
specificEmployee _class functions that differ for a1anager _class . By using the concept of a class
hierarchy, less programming effort is required to create the final enhanced program. In F9O0 the earlier
class is broughtinto the later class hierarchy by the “use” statement followed by the name of the “module”
statement block that defined the class.

Polymorphisnallows different classes of objects that share some common functionality to be used in
code that requires only that common functionality. In other words, routines having the same generic name

©2001 J.E. Akin 33

are interpreted differently depending on the class of the objects presented as arguments to the routines.
This is useful in class hierarchies where a small number of meaningful function names can be used to
manipulate different, but related object classes. The above concepts are those essential to object oriented
design and OOP. In the later sections we will demonstrate by example additional F90 implementations
of these concepts.

3.2 Encapsulation, Inheritance, and Polymorphism

We often need to use existing classes to define new classes. The two ways to do this acemgdtesition
andinheritance We will use both methods in a series of examples. Consider a geometry program
that uses two different classedass _Circle andclass _Rectangle , as represented graphically in

Figs. 3.1 and 3.2. and as partially implemented in F90 as shown in Fig. 3.3. Each class shown has the
data types and specifications to define the object and the functionality to compute their respective areas
(lines 3-22). The operator % is employed to select specific components of a defined type. Within the
geometry (main) program a single routimempute _area , is invoked (lines 38 and 44) to return the

area forany of the defined geometry classes. That is, a generic function name is used for all classes
of its arguments and it, in turn, branches to the corresponding functionality supplied with the argument
class. To accomplish this branching the geometry program first brings in the functionality of the desired
classes via a “use” statement for each class module (lines 25 and 26). Those “modules” are coupled to
the generic function by an “interface” block which has the generic function mampute _area (lines

28, 29). There is included a “module procedure” list which gives one class routine name for each of the
classes of argument(s) that the generic function is designed to accept. The ability of a function to respond
differently when supplied with arguments that are objects of different types is qadlgchorphism

In this example we have employed different namestangular _area andcircle _area , in their
respective class modules, but that is not necessary. The “use” statement allows one to rename the class
routines and/or to bring in only selected members of the functionality.

Circle Class
‘ real ‘ radi us
‘ real ‘ pi
Crcle make _Circle —
real Circle Area —>
‘ Crcle ‘ Crcle

Figure 3.1 Representation of a Circle Class

Another terminology used in OOP is that @dnstructorsand destructorsfor objects. An intrinsic
constructor is a system function that is automatically invoked when an object is declared with all of its
possible components in the defined order (see lines 37 and 43). In C++, and F90 the intrinsic constructor
has the same name as the “type” of the object. One is illustrated in the statement

four _sides = Rectangle (2.1,4.3)

where previously we declared

type (Rectangle) :: four _sides

which, in turn, was coupled to th#ass _Rectangle which had two components, base and height,
defined in that order, respectively. The intrinsic constructor in the example statement sets component

©2001 J.E. Akin 34

Rectangle Class
real base
real height
Rectangle make Rectangle e
real rectangular_area —
rRectangl e Rectangle J

Figure 3.2 Representation of a Rectangle Class

1] ! Areas of shapes of different classes, using different

2] ! function names in each class

3] module class _Rectangle I define the first object class

4] implicit none

5 type Rectangle

6 real :: base, height ; end type Rectangle

7] contains ! Computation of area for rectangles.

8 function rectangle _area (r) result (area)

9 type (Rectangle), intent(in) :: r

10 real ;o area

11 area = r%base * r%height ; end function rectangle _area
%g end module class _Rectangle

14] module class _Circle ! define the second object class

15 real @ pi = 3.1415926535897931d0 ! a circle constant

16 type Circle

17 real :: radius ; end type Circle

18] contains ! Computation of area for circles.

19 function circle _area (c) result (area)

20 type (Circle), intent(in) :: ¢

21 real 1 area

22 area = pi * c%radius**2 ; end function circle _area
23] end module class _Circle

24

25] program geometry ! for both types in a single function

26 use class _Circle

27 implicit none

28 use class _Rectangle

29] ! Interface to generic routine to compute area for any type

30 interface compute _area

31 module procedure rectangle _area, circle _area ; end interface
32

33] ! Declare a set geometric objects.

34 type 2 Rectangle) :: four _sides

35 type (Circle) 1 two _sides ! inside, outside

36 real ;o area = 0.0 ! the result

37

38] ! Initialize a rectangle and compute its area.

39 four _sides = Rectangle (2.1, 4.3) ! implicit constructor
40 area = compute _area (four _sides) ! generic function
41 write (6,100) four _sides, area ! implicit components list
3% 100 format ("Area of ",f3.1," by ",f3.1," rectangle is ",f5.2)

44] | Initialize a circle and compute its area.

45 two _sides = Circle (54) I implicit constructor
46 area = compute _area (two _sides) ! generic function
47 write (6,200) two _sides, area

48 200 format ("Area of circle with ",f3.1," radius is ",f9.5)

49] end program geometry ! Running gives:

50] ! Area of 2.1 by 4.3 rectangle is 9.03

51] ! Area of circle with 5.4 radius is 91.60885

Figure 3.3 Multiple Geometric Shape Classes

base = 2.1 and componertieight = 4.3 for that instancefour _sides , of the typeRectangle
This intrinsic construction is possible because all the expected components of the type were supplied. If
all the components are not supplied, then the object cannot be constructed unless the functionality of the

©2001 J.E. Akin 35

1 function make _Rectangle (bottom, side) result (name)

2] ! Constructor for a Rectangle type

3] implicit none

4 real, optional, intent(in) : bottom S|de

5 type (Rectangle) I nam

6 name = Rectangle (1.,1.) ! default to unit square

7 if (present(bottom)) then | default to square

8 name = Rectangle (bottom, bottom) ; end if

9 if (present(side)) name = Rectangle (bottom, side) ! intrinsic

10 end function make _Rectangle

11

12 type (Rectangle) :: four _sides, square, unit _sq

13 Test manual constructors

14 four _sides = make _Rectangle (2.1,4.3) ! manual constructor, 1
15 area = compute _area (four _sides) ! generic function
16 write (6,100) four _sides, area

17] ! Make a square

18 square = make _Rectangle (2.1) I manual constructor, 2
19 area = compute _area (square) ! generic function

20 write (6,100) square, area

21] ! "Default constructor”, here a unit square

22 unit _sq = make _Rectangle () I manual constructor, 3
23 area = compute _area (unit _sq) ! generic function
24 write (6,100) unit _sq, area

25 S

26] ! Runnin glves

27] ! Area of 2.1 by 4.3 rectangle is 9.03

28] ! Area of 21 by 2.1 rectangle is 4.41

29] ! Area of 1.0 by 1.0 rectangle is 1.00

Figure 3.4: A Manual Constructor for Rectangles

class is expanded by the programmer to accept a different number of arguments.

Assume that we want a special member of Heetangle class, a square, to be constructed if the
height is omitted. That is, we would ugeight = base in that case. Or, we may want to construct a
unit square if both are omitted so that the constructor defaulta¢e = height = 1 . Such a manual
constructor, namedanake_Rectangle , is illustrated in Fig. 3.4 (see lines 5, 6). It illustrates some
additional features of F90. Note that the last two arguments were declared to have the additional type
attributes of “optional” (line 3), and that an associated logical function “present” is utilized (lines 6 and 8)
to determine if the calling program supplied the argument in question. That figure also shows the results
of the area computations for the corresponding variables “square” and ‘sgiidefined if the manual
constructor is called with one or no optional arguments (line 5), respectively.

In the next section we will illustrate the concept of data hiding by usingtivete attribute. The
reader is warned that the intrinsic constructor can not be employed if any of its arguments have been
hidden. In that case a manual constructor must be provided to deal with any hidden components. Since
data hiding is so common it is probably best to plan on prividing a manual constructor.

3.2.1 Example Date, Person, and Student Classes

Before moving to some mathematical examples we will introduce the concept of data hiding and combine
a series of classes to illustrate composition and inheritarféest, consider a simple class to define dates

and to print them in a pretty fashion, as shown in Figs. 3.5 and 3.6. While other modules will have
access to the Date class they will not be given access to the number of components it contains (3),
nor their names (month, day, year), nor their types (integers) because they are declared “private” in the
defining module (lines 5 and 6). The compiler will not allow external access to data and/or routines
declared as private. The modutégss _Date , is presented as a source “include” file in Fig. 3.6, and

in the future will be reference by the file namiass _Date.fo0 . Since we have chosen to hide all

the user defined components we must decide what functionality we will provide to the users, who may
have only executable access. The supporting documentation would have to nhame the public routines and
describe their arguments and return results. The default intrinsic constructor would be available only to
those that know full details about the components of the data type, and if those components are “public.”

TThese examples mimic those given in Chapter 11 and 8 of the J.R. Hubbard book “Programming with C++,” McGraw-Hill,
1994, and usually use the same data for verification.

©2001 J.E. Akin 36

Date Class

i nt eger nont h

i nt eger day

i nt eger year
Dat e Dat e_ —
Dat e Print_Date —>
Dat e Read_Dat e —
Dat e Set _Date —

Dat e Dat e

Figure 3.5 Graphical Representation of a Date Class

The intrinsic constructoDate (lines 14 and 34), requires all the components be supplied, but it does
no error or consistency checks. My practice is to also define a “public constructor” whose name is the
same as the intrinsic constructor except for an appended underscore Dhgt is, Its sole purpose is to

do data checking and invoke the intrinsic construdbate . If the functionDate _ (line 10) is declared
“public” it can be used outside the moduwlass _Date to invoke the intrinsic constructor, even if the
components of the data type being constructed are all “private.” In this example we have provided another
manual constructor to set a datet _Date (line 31), with a variable number of optional arguments. Also
supplied are two subroutines to read and print da¢es, _Date (line 27) andprint _Date (line 16),
respectively.

A sample main program that employs this class is given in Fig. 3.7, which contains sample outputs
as comments. This program uses the default constructor as well as all three programs in the public class
functionality. Note that the definition of the class was copied in via an “include” (line 1) statement and
activated with the “use” statement (line 4).

Now we will employ theclass _Date within aclass _Person which will use it to set the date of
birth (DOB) and date of death (DOD) in addition to the otkerson components of name, national-
ity, and sex. As shown in Fig. 3.8, we have made all the type components “private,” but make all the
supporting functionality public, as represented graphically in Fig. 3.8. The functionality shown provides
a manual constructomake_ Person , routines to set the DOB or DOD, and those for the printing of
most components. The source code for the revgon class is given in Fig. 3.9. Note that the manual
constructor (line 12) utilizes “optional” arguments and initializes all components in case they are not
supplied to the constructor. Timate _ public function from theclass _Date is “inherited” to initial-
ize the DOB and DOD (lines 18, 57, and 62). That function member from the previous module was
activated with the combination of the “include” and “use” statements. Of course, the include could have
been omitted if the compile statement included the path name to that source. A sample main program
for testing theclass _Person is in Fig. 3.10 along with comments containing its output. It utilizes the
constructor®ate _ (line 7),Person _ (linel0), andnake_Person (line 24).

Next, we want to use the previous two classes to deficlesa _Student which adds something
else special to the generdass _Person . The student person will have additional “private” compo-
nents for an identification number, the expected date of matriculation (DOM), the total course credit hours
earned (credits), and the overall grade point average (GPA), as represented in Fig. 3.11. The source lines
for the type definition and selected public functionality are given in Fig. 3.12. There the constructors
aremake_Student (line 19) andStudent _ (line 47). A testing main program with sample output is
illustrated in Fig. 3.13. Since there are various ways to utilize the various constructors three alternate
methods have been included as comments to indicate some of the programmers options. The first two
include statements (lines 1, 2) are actually redundant because theritiirde automatically brings
in those first two classes.

©2001 J.E. Akin 37

OO~ TS WN =

O©O~NDTLAWN -

module class _Date ! filename: class _Date.f90
implicit none
public :: Date ! and everything not "private"

type Date
private
Integer :: month, day, year ; end type Date

contains ! encapsulated functionality

function Date (d, y) result (x) ! publlc constructor
integer, |ntent(|n) d, ! month, day, year
type (Date) I from’ intrinsic constructor

if (m < 1 .or d < 1) stop ’Invalid components, Date —
x = Date (m, d, y) ; end function Date —

subroutine print _Date (x) I check and pretty print a date
type (Date), |ntent(|n) :
character (len= *), parameter B month _Name(12)
(/ "January ", February , "March " "April &
"May " une " July "TiAugust &
"September”, ""October “November ", "December "/)
if (x%month < 1 .or. x%month > 12 prlnt *, “Invalid month"
i x%day < 1 .or. xX%day > 31) print *, "Invalid day "
print *, trim(month _Name(x%month)),” ’, x%day, ", ", x%year,;
end subroutine print _Date

subroutine read _Date (x) ~ ! read month, day, and year
type (Date), mtent(out{) 2 x ! into intrinsic constructor
read *, X ; end subroutine read _Date

function set _Date (m, d, y) result (x) ! manual constructor
integer, optional, intent(in) :: m, d, y ! month, day, year

type (Date) X
x = Date (1,1,1997) | default, (or use current date)
if E presentém)) x%month = m ; if (present(d)) x%day =d
present(y)) x%year =y ; end function set _Date
end module class _Date

Figure 3.6 Defining a Date Class

include ’class. _Date.fo0’ | see previous figure
program main
use class _Date
implicit none
type (Date) :: today, peace

| peace = Date (11,11,1918) ! NOT allowed for private components

peace = Date _ (11,11,1918) ! public constructor
print *, "World War | ended on " ; call print _Date (peace)
peace = set _Date (8, 14, 1945) ! optional constructor
print *, "World War Il ended on " ; call print _Date (peace)
print *, "Enter today as integer month, day, and year: "
call read _ Date(today) I create today’s date
print *, "The date is "; call print _Date (today)

end program main ! Running produces:

! World War | ended on November 11, 1918

! World War Il ended on August 14, 1945

I Enter today as integer month, day, and year: 7 10 1997
! The date is July 10, 1997

Figure 3.7: Testing a Date Class

3.3 Object Oriented Numerical Calculations

OOP is often used for numerical computation, especially when the standard storage mode for arrays is
not practical or efficient. Often one will find specialized storage modes like linked lists, or tree structures
used for dynamic data structures. Here we should note that many matrix operators are intrinsic to F90,
so one is more likely to define dass _sparse _matrix than aclass _matrix . However, either

class would allow us to encapsulate several matrix functions and subroutines into a module that could be
reused easily in other software. Here, we will illustrate OOP applied to rational numbers and introduce

©2001 J.E. Akin 38

Person Class
character name
character nationality
i nt eger sex
Dat e Date OF Birth
Dat e Date_O _Deat h
Per son Per son_ —
Per son make_Per son —
Per son print_DOB —
Per son print_DOD —>
Per son print_Nane —
Per son print_Nationality —>
Per son print_Sex —>
Per son set _DOB —
Per son set _DCD —
Per son Per son

Figure 3.8 Graphical Representation of a Person Class

the important topic of operator overloading. Additional numerical applications of OOP will be illustrated
in later chapters.

3.3.1 A Rational Number Class and Operator Overloading

To illustrate an OOP approach to simple numerical operations we will introduce a fairly complete rational
number class, calledass _Rational which is represented graphically in Fig. 3.14. The defining F90
module is given in Fig. 3.15. The type components have been made private (line 5), but not the type
itself, so we can illustrate the intrinsic constructor (lines 38 and 102), but extra functionality has been
provided to allow users to get either of the two components (lines 52 and 57). The provided routines
shown in that figure are:

add _Rational convert copy _ Rational delete _Rational
equal _integer gcd get _Denominator get _Numerator
invert is _equal _to list make _Rational
mult _Rational Rational - reduce

Procedures with only one return argument are usually implemented as functions instead of subroutines.
Note that we would form a new rational numberas the product of two other rational numbers,
andy, by invoking themult _Rational function (line 90),
z = mult _Rational (X,y)

which returnsz as its result. A natural tendency at this point would be to simply write this as

x * y. However, before we could do that we would have to have to tell the operator, “*”, how to act
when provided with this new data type. This is knowroasrloadingan intrinsic operator. We had the
foresight to do this when we set up the module by declaring which of the “module procedures” were
equivalent to this operator symbol. Thus, from the “interface operator (*)” statement block (line 14)
the system now knows that the left and right operands of the “*” symbol correspond to the first and
second arguments in the functiomlt _Rational . Here it is not necessary to overload the assignment
operator, “=", when both of its operands are of the same intrinsic or defined type. However, to convert

©2001 J.E. Akin 39

OO~ T WN =

module class _Person ! filename: class _Person.f90

use class _Date
implicit none
public :: Person
type Person
private
character (len=20) :: name
character (len=20) :: nationality
mteger osex
dype (Date) > dob, dod ! birth, death
end type Person
contains
Tunction make _Person (nam, nation, s, b, d) result (who)

Optional Constructor for a Person type
character (len=*), optional, intent(in) :: nam, nation

integer, optional, intent(in) :: s I sex

type (Date), optional, intent(in) :: b, d ! birth, death

type (Person) 2 who
who = Person (" ","USA",1,Date _(1,1,0),Date —(1,1,0)) ! defaults
if (present(nam) who % name nam
if (present(nation)) who % natlonallty = natlon
if (present(s who % sex S
if (present(b who % dob =b
if (present(d who % dod = d ; end function

functlon Person _ (nam, nation, s, b, d) result (who)

Public Constructor for a Person type
character (len=*), intent(in) :: nam, nat|on

integer, _intent(in) 3 s
type gDate) intent(in) : d ! blrth death
type (Person) : who
who = Person (nam, nation, s, b d) ; end function Person _
subroutine print _DOB (who)
type (Person), intent(in) :: who
call print _Date (who % dob) ; end subroutine print _DOB
subroutine print ~ _DOD (who)
type (Person), intent(in) :: who
call print _Date (who % dod) ; end subroutine print _DOD
subroutine print _Name ﬁ\yho)
type (Person), intent(in) :: who
print *, who % name ; end subroutine print _Name
subroutine print _Nationality (who)
type (Person), intent(in) :: who
print *, who % nationality ; end subroutine print _ Nationality
subroutine print _Sex (who)
type (Person), mtent(m) : who
if (who % sex == 1) then ; print *, "male"
else ; print *, "female" ; end If ; end subroutine print _Sex
subroutine set _DOB (Who m, d, y)
type (Person), intent(inout) :: who
integer, |ntent(|n) ' m, d, y ! month, day, year
who % dob = Date _ (m, d, y) ;end subroutine set _DOB
subroutine set _DOD(who, m, d, y)
type (Person), intent(inout) :: who
integer, intent(in) ' m, d, y ! month, day, year
who % dod = Date _ (m, d, y) ; end subroutine set _DOD
end module class _Person

Figure 3.9 Definition of a Typical Person Class

an integer to a rational we could, and have, defined an overloaded assignment operator procedure (line
10). Here we have provided the procedusgual _Integer , which is automatically invoked when

we write ! type(Rational)y; y = 4 . That would be simpler than invoking the constructor called
make_rational . Before moving on note that the system does not yet know how to multiply an integer
times a rational number, or visa versa. To do that one would have to add more functionality, such as a
function, sayint _mult _rn, and add it to the “module procedure” list associated with the “*” operator.

A typical main program which exercises most of the rational number functionality is given in Fig. 3.16,
along with typical numerical output. It tests the construc®agonal _ (line 8), make_ Rational

©2001 J.E. Akin 40

1] include ’class _ Date.fo0’

2] include ’class _Person.fo0’ | see previous figure

3] program main

4 use class _Date ; use class _Person ! inherit class members
5 implicit none

6 type §Person) :» author, creator

7 type (Date) b, d ! birth, death

8 b = Date _(4,13,1743) ; d = Date —(7, 4,1826) ! OPTIONAL

9 ! Method 1

10 I author = Person ("Thomas Jefferson”, "USA", 1, b, d) ! NOT if private

11 author = Person _ ("Thomas Jefferson", "USA", 1, b, d) ! constructor
12 print *, "The author of the Declaration of Independence was ";

13 call print —Name (author);

14 print *, ". He was born on "; call print _DOB (author);

15 print *, " and died on "; call print _DOD (author); print *, ".";
16 ! Method 2

17 author = make _Person ("Thomas Jefferson", "USA") | alternate

18 call set _DOB (author, 4, 13, 1743) ! add DOB

19 call set _DOD (author, 7, 4, 1826? ! add DOD

20 print *, "The author of the Declaration of Independence was ";

21 call print _Name (author)

22 print *, ". He was born on "; call print _DOB (author);

23 print *, " and died on "; call print _DOD (author); print *, ".";
24 ! Another Person

25 creator = make _Person ("John Backus", "USA") | alternate

26 print *, "The creator of Fortran was "; call print _Name (creator);
27 print *, " who was born in "; call print _Nationality (creator);
28 print *, ".";

29] end program main ! Running gives:
30] ! The author of the Declaration of Independence was Thomas Jefferson.

31] ! He was born on April 13, 1743 and died on July 4, 1826.

32] | The author of the Declaration of Independence was Thomas Jefferson.

33] ! He was born on April 13, 1743 and died on July 4, 1826.

34] ! The creator of Fortran was John Backus who was born in the USA.

Figure 3.1Q Testing the Date and Person Classes

Student Class
Per son who
character id[SSN

Dat e matricul ation
i nt eger credits

real gpa
St udent St udent _ —
St udent make_St udent <
St udent get _Person <
St udent print_DOM —p
St udent print_ GPA —p
St udent set _DOM —

St udent St udent

Figure 3.11 Graphical Representation of a Student Class

(lines 14, 18, 25), and a simple destrualetete _Rational (line 38). The intrinsic constructor (line

6) could have been used only if all the attributes were public, and that is considered an undesirable
practice in OOP. The simple destructor actually just sets the “deleted” number to have a set of default
components. Later we will see that constructors and destructors often must dynasaiieedlg and
deallocate , respectively, memory associated with a specific instance of some object.

©?2001 J.E. Akin 41

OO~ T WN =

module class _ Student ! filename class _ Student.fo0

use class _Person ! inherits class _Date
implicit none
public :: Student, set _DOM, print _DOM
type Student

private

type (Person) i who ! name and sex

character (len=9) : ! ssn digits

type (Date :: dom I matriculation

integer o credits

real ogpa | grade point average

end type Student

contains ! coupled functionality

function get _person (s) result (p)
type (Student), intent(in) :: s
type (Person) Tp I name and sex
p = s % who ; end function get _person
function make _Student (w, n, d, ¢, g) result (x) ! constructor

Optional Constructor for a Student type
type (Person),]] intent(in) :: w ! who
character Slenz*), optional, intent(in) :: n ! ssn

type (Date optional, intent(in) :: d ! matriculation
|nteger optional, intent(in) : c I credits
optional, intent(in) :: g ! grade point ave
type (Student) X ! new student
X = Student _(w, " ", Date _(1,1,1), 0, 0. ! defaults
if (present(n)) x % id =n ! optional values
present(d % dom =d
present(c)) x % credits = ¢
f (present(g)) x % gpa = g ; end function make _ Student
subroutine print _DOM (who)
type (Student), intent(in) :: who
call print _Date(who%dom) ; end subroutine print _DOM
subroutine print _GPA (x)
type (Student), intent(in) :: X
print *, "My name is "; call print _Name (x % who)
print *, *, and my G.P.A. is ", X % gpa, "." ; end subroutine
subroutine set _DOM (who m d, y)
type (Student), intent(inout) :
mte%er, intent(in) :)
who % dom = Date _(m, d y) end subroutine set _DOM
function Student — (w, d, ¢, g) result (x)
! Public Constructor for a Student type
type (Person), intent(in) :: w ! who
character Slenz*) intent(in) :: n ! ssn
type (Date), intent(in) :: d ! matriculation
integer, intent(in) © ¢ ! credis
real, intent(in) :: g ! grade point ave
type (Student) x| new student

X = Student (w, n, d, ¢, g) ; end function Student _

end module class _ Student

Figure 3.12 Defining a Typical Student Class

When considering which operators to overload for a newly defined object one should consider those

that are used isorting operations, such as the greater-thanand less-thans, operators. They are
often useful because of the need to sort various types of objects. If those symbols have been correctly
overloaded then a generic object sorting routine might be used, or require few changes.

3.4 Discussion

The previous sections have only briefly touched on some important OOP concepts. More details will be
covered later after a general overview of the features of the Fortran language. There are more than one
hundred OOP languages. Persons involved in software development need to be aware that F90 can meet
almost all of their needs for a OOP language. At the same time it includes the F77 standard as a subset
and thus allows efficient use of the many millions of Fortran functions and subroutines developed in the
past. The newer F95 standard is designed to make efficient use of super computers and massively parallel

©2001 J.E. Akin 42

1] include ’class _ Date.fo0’

2] include ’class _Person.fo0’

3] include ’class _Student.fo0’ | see previous figure

4] program main | create or correct a student

5 use class _Student ! inherits class _Person, class _Date also
6 implicit none

7 type (Person) :: p ; type (Student) :: x

8 Method 1

9 p = make _Person ("Ann Jones",",0) ! optional person constructor

10 call set _DOB (p, 5, 13, 1977) | add birth to person data

11 x = Student _(p, "219360061", Date —(8,29,1955), 9, 3.1) ! public
12 call print _Name (p) ! list name
13 print *, "Born "y call print _DOB (p) ! list dob
14 print *, "Sex % call print _Sex (p I list sex
15 print *, "Matriculated:"; call print _DOM (x) ! list dom
16 call print _GPA (x) I list gpa
17 ! Method 2

18 x = make _Student (p, "219360061") | optional student constructor
19 call set _DOM (x, 8, 29, 1995) I' correct matriculation

20 call print _Name (p) ! list name
21 print *, "was born on :"; call print _DOB (p) ! list dob
22 print *, "Matriculated:"; call print _DOM (x) ! list dom
23 ! Method 3

24 x = make _Student (make _Person("Ann Jones"), "219360061") ! optional
25 p = get _Person (X) | get defaulted person data
26 call set _DOM (x, 8, 29, 1995 | add matriculation

27 call set _DOB (p, 5, 13, 1977 I add birth

28 call print —Name (p) I list name
29 print *, "Matriculated:"; call print _DOM (x) ! list dom
30 print *, "was born on :"; call print _DOB (p) ! list dob
31] end program main ! Running gives:
32] ! Ann Jones

33] ! Born : May 13, 1977

34] ! Sex : female

35] | Matriculated: August 29, 1955

36] ! My name is Ann Jones, and my G.P.A. is 3.0999999.

37] ! Ann Jones was born on: May 13, 1977 , Matriculated: August 29, 1995

38] ! Ann Jones Matriculated: August 29, 1995 , was born on: May 13, 1977

Figure 3.13 Testing the Student, Person, and Date Classes

machines. It includes most of the High Performance Fortran features that are in wide use. Thus, efficient
use of OOP on parallel machines is available through F90 and F95.

None of the OOP languages have all the features one might desire. For example, the useful concept
of a “template” which is standard in C++ is not in the F90 standard. Yet the author has found that a
few dozen lines of F90 code will define a preprocessor that allows templates to be defined in F90 and
expanded in line at compile time. The real challenge in OOP is the actual OOA and OOD that must be
completed before programming can begin, regardless of the language employed. For example, several
authors have described widely different approaches for defining classes to be used in constructing OO
finite element systems. Additional example applications of OOP in F9O0 will be given in the following
chapters.

©2001 J.E. Akin 43

Rational Class

i nt eger numer at or
i nteger denomi nat or
Rat i onal Rati onal _ —
Rat i onal make_Rat i onal —
Rat i onal add_Rat i onal -
Rat i onal convert ~—p
Rat i onal copy_Rati onal <
Rat i onal del et e_Rati onal —
Rat i onal equal _Rat i onal -
Rat i onal get _Denom nat or —
Rat i onal get _Nuner at or —>
Rat i onal i nvert —
Rat i onal is equal to -
Rat i onal list —
Rat i onal mul t _Rat i onal <

Rat i onal Rat i onal

i nt eger gced

Rat i onal reduce

Figure 3.14 Representation of a Rational Number Class

©?2001 J.E. Akin 44

1] module class _Rational I filename: class —Rational.fo0
2] implicit none

3] ! public, everything but following private routines

4] private :: gcd, reduce

5 type Rational

6 private ! numerator and denominator

7 Integer :: num, den ; end type Rational

8

9 ! overloaded operators interfaces

10 interface assignment (=)

11 module procedure equal _Integer ; end interface

12 interface operator (+) ! add unary versions & (-) later

13 module procedure add _Rational ; end interface

14 interface operator (*) ! add integer _mult _Rational, etc
15 module procedure mult _Rational ; end interface

16 interface operator (==

17 module procedure is _equal _to ; end interface

18] contains ! inherited operational functionality

19] function add _Rational (a, b) result (c) ! to overload +

20 type (Rational), intent(in) : b I left + right

21 type (Rational c

22 c % num = a % num*b % den + a % den*b % num

23 C % den = a % den*b % den

gg caII reduce (c) ; end function add _Rational

26] function convert (name) result (value) ! rational to real

27 type (Rational), intent(in) :: name

28 real o value ! decimal form

29 value = float(name % num)/name % den ; end function convert

30

31] function copy _Rational (name) result (new)

32 type ERatlonaIg, intent(in) :: name

33 type (Rational I new

34 new % num = name % num

32 new % den = name % den ; end function copy _Rational

3

37] subroutine delete _Rational (name) ! deallocate allocated items
38 type (Rational), intent(inout) :: name ! simply zero it here

28 name = Rational (0, 1) ; end subroutine delete _Rational
41] subroutine equal _Integer (new, 1) ! overload =, with integer

42 type (Rational), intent(out) :: new ! left side of operator

43 integer, intent(in) | ! right side of operator

44 new % num = | ; new % den = 1 ; end subroutine equal _Integer
45

46] recursive function gcd (J k) result (g) ! Greatest Common Divisor

47 integer, intent(in) : k 1 numerator, denominator

48 integer "

49 if(k——O)the' {

50 else ; g = gcd (k, modu o(j,k)) ! recursive call

5% end if ; functlon gcd

5

53] function get _Denominator (name) result (n) I an access function
54 type (Rational), intent(in) :: name

55 integer on I denominator

56 n = name % den ; end function get _ Denominator

(Fig. 3.15, A Fairly Complete Rational Number Class (continued))

2001 J.E. Akin 45
©

57 function get _Numerator (name) result (n) ! an access function
58 type (Rational), intent(in) :: name

59 integer I numerator

g(l) n = name % num ; end functlon get —Numerator

62 subroutine invert (name) ! rational to rational inversion

63 type (Rational), intent(inout) :: name

64 integer 1 temp

65 temp = name % num

66 name % num = name % den

67 name % den = temp ; end subroutine invert

68

69 function is _equal _to (a _given, b _given) result (t _f

70 type (Rational), intent(in) :: a _given, b _qgiven ! left == right
71 type (Rational ta b ! reduced copies
72 logica oot _

73 a-= c%{) _Rational (a _given) ; b = copy _Rational (b _given)
74 caII re uce(a) call reduce(b) ! reduced to lowest terms

75 t — (a/onum == b%num) .and. (a%den == b%den) ; end function
76

77 subroutine list(name) I as a pretty print fraction

78 type (Rational), intent(in) :: name

gg print *, name % num, “/*, name % den ; end subroutine list

81 function make _Rational (numerator, denominator) result (name)

82 ! Optlonal Constructor for a rational type

83 integer, optional, intent(in) :: numerator, denominator

84 type (Rational) I name

85 name = Rational(0, 1 ! set defaults
86 if (present(numerator)) name % num = numerator

87 if (present(denominator)) name % den = denominator

88 if (name % den == 0) name % den = 1 I now simplify
gg call reduce (name) ; end function make _Rational

91 function mult _Rational (a, b) result (c) ! to overload *
92 type (Rational), intent(in) :

93 type (Rational c

94 %num—a%num*b%num

95 c % den = a % den * b % den

gg caII reduce (c) ; end function mult _Rational

98 functlon Rational (numerator, denominator) result (name)

99 ! Public Constructor for a rational type

100 integer, optional, intent(in) :: numerator, denominator

101 type (Rational) 1 hame

102 f (denominator == 0 R then ; name = Rational (numerator, 1)

103 else ; name = Ratlona (numerator, denominator) ; end if

104 end function Rational —

105

106 subroutine reduce (name) ! to simplest rational form

107 type (Rational), intent(inout) :: name

108 integer i g ! greatest common divisor
109 g = gcd (name % num name % den)

110 name % num = name % num/g

111 name % den = name % den/g ; end subroutine reduce

112] end module class — Rational

Figure 3.15 A Fairly Complete Rational Number Class

©2001 J.E. Akin 46

1] include ’class _Rational.f90’

2] program main

3] use class _Rational

4] implicit none

5 type (Ratlonalg X, Y,

6] ! - only i Rational |s NOT private ----------

g ' x = Rational(22,7) ! intrinsic constructor if public components

9 X = Rational _(22 7) ! public constructor if private components
10 write é*,’ﬁ"public = "),advance="no’); call list(x)

11 write (*,’("converted x = ", g9.4)") convert(x)

12 call invert(x)

%i write (*,'("Inverted 1/x = ")',advance='no’); call list(x)

15 x = make _Rational () ! default constructor

16 write (*,("made null x = "),advance='no’); call list(x)

17 y =4 ! rational = integer overload
18 write (*,'("integer y = ")',advance="no’); call list(y)

19 z = make _Rational (22,7) I manual constructor

20 write (*,("made full z = ")',advance='no’); call list(z)

21 ! Test Accessors

22 write (*,'("top of z =", g4.0)) get _numerator(z)
23 write (*,'("bottom of z =", g4.0)) get _denominator(z)
24 ! Misc. Function Tests

25 write (*,’("making x = 100/360, ")',advance='no’)

26 X = make _Rational (100,360)

27 write g* ’g"reduced x = "),advance='no’); call list(x)

28 write (*,'("copying x to y gives "),advance="no’)

29 y = copy —_Rational (x)

30 write (*,'("a new y = "),advance='no’); call list(y)

31 ! Test Overloaded Operators

32 write (*,("z * x gives "),advance="no’); call list(z*x) ! times

33 erte *’("z + x gives "),advance='no’); call list(z+x) ! add

34 y = ! overloaded assignment
35 wnte *'("y = z glves y as "),advance= no) caII list(y)

36 write *"‘ ogic y == X gives "’advance 'no’); print *,; y==x

37 write * ‘("logic y == z gives "),advance='no’); print *, y==z

38 ! Destruct

39 call delete _Rational (y) I actually only null it here

40 write (¥, (deletlng y gives y = "),advance='no’); call list(y)

41] end program main I Running gives:
42] ! public X = 2217 ! converted x = 3.143

43] ! inverted 1/x = 7/ 22 ! made null x = 0/ 1

44] | mteger y = 4/1 ! made full z = 22/ 7

45] | top of = 22 I bottom of z = 7

46] ! making x = 100/360, reduced x = 5/ 18

47] ! copying x to y gives a new y = 5/ 18

48] ! z * x gives 55/ 63 ! z + X gives 431 / 126

49] ! = zgvesyas 22/7 ! ? == x gives F

50] ! ogic y == z gives T ! deletingy givesy = 0/ 1

Figure 3.16 Testing the Rational Number Class

©?2001 J.E. Akin 47

3.5 Exercises

1. Use theclass _Circle to create alass _Sphere that computes the volume of a sphere. Have
a method that accepts an argument cfi@le . Use theradius of the Circle via a new member
get _Circle _radius to be added to thelass _Circle

2. Use theclass _Circle andclass _Rectangle to create alass _Cylinder that computes
the volume of aright circular cylinder. Have a method that accepts argumen@@rofea and aheight
and a second method that accepts argumentsRédctangle and aradius . In the latter member
use theheight of the Rectangle via a new membeget _Rectangle _height to be added to the
class _Rectangle

3. Create a vector class to treat vectors with an arbitrary number of real coefficients. Assume that the
class _Vector is defined as follows:

Vector Class
i nt eger size
real, pointer data (:)
Vect or assi gn —
Vect or make_Vect or r—
Vect or add_Real _to_Vect or <
Vect or add_Vect or =
Vect or copy_Vect or >
Vect or del et e_Vect or —
real dot _Vect or —
Vect or equal _Real —>
| ogi cal is_equal _to —
real I ength —
Vect or l'ist —
Vect or normal i ze_Vect or <
Vect or read_Vect or —
Vect or real _nult_Vector -
i nt eger si ze_Vect or r—
Vect or subtract _Real t—p
Vect or subtract _Vect or free
real val ues —
Vect or Vect or _ r—
real Vect or _max_val ue —>
real Vect or _m n_val ue fre
Vect or Vector _mult _real t—b
‘ Vect or ‘ Vect or ‘

Overload the common operators of (+) widlid _Vector andadd _Real _to _Vector , (-) with
subtract _Vector andsubtract _Real, (*) with dot _Vector , real _mult _Vector andVec-
tor _mult _real , (=) with equal _Real to set all coefficients to a single real number, and) (with
routineis _equal _to .

Include two constructorassignandmake _Vector . Letassignconvert a real array into an instance
of a Vector. Provide a destructor, means to read and write a Vector, normalize a Vector, and determine its
extreme values.

©2001 J.E. Akin 48

4. Modify the above Vector class to extend it t8@arse _Vector _Class where the vast majority

of the coefficients are zero. Store and operate only on the non-zero entries.

©2001 J.E. Akin

Sparse_Vector Class

i nt eger non_zer os
i nteger, pointer rows (:)
real, pointer val ues (:)

Spar se_Vect or

make_Spar se_Vect or

Sparse_Vector | add_Real _t o_Sparse_Vect or

Spar se_Vect or

add_Spar se_Vect or

Spar se_Vect or

del et e_Spar se_Vect or

rea

dot _Vector

Spar se_Vect or

el _by_ el _Milt

Spar se_Vect or

equal _Vect or

real get _el enent
| ogi cal is_equal _to
i nteger | ar gest _i ndex
real | ength
real norm
Spar se_Vect or normal i ze_Vect or
Spar se_Vect or pretty

Spar se_Vect or

read_Vect or

Spar se_Vect or

real _mult_Sparse

i nteger r ows_of
Spar se_Vect or set _el ement
Spar se_Vect or show
Spar se_Vect or show r_v

i nt eger si ze_of

Spar se_Vect or

Sparse_mult_rea

Spar se_vect or

sub_Spar se_Vect or

Spar se_Vect or

sum Spar se_Vect or

real

Vect or _max_val ue

rea

Vect or _m n_val ue

Spar se_Vect or

Vect or _t o_Spar se

Spar se_Vect or

zer o_Sparse

N I R AR R R R AN KR

Spar se_Vect or

Spar se_\Vect or

49

Chapter 4

Features of Programming Languages

The preceding chapter described the programming process as starting with a clearly specified task, ex-
pressing it mathematically as a set of algorithms, translating the algorithms in pseudocode, and finally,
translating the pseudocode into a “real” programming language. The final stages of this prescription work
because most (if not all) computational languages have remarkable similarities: They have statements,
the sequencing of which are controlled by various loop and conditional constructs, and functions that
foster program modularization. We indicated how similasias, C++, and Fortran are at this level,

but these languages differ the more they are detailed. It is the purpose of this chapter to describe those
details, and bring you from a superficial acquaintance with a computational language to fluency. Today,
the practicing engineer needs more than one programming language or environment. Once achieving
familiarity with one, you will find that learning other languages is easy.

When selecting a programming tool for engineering calculations, one is often faced with two different
levels of need. One level is where you need to quickly solve a small problem once, such as a homework
assignment, and computational efficiency is not important. You may not care if your code takes ten
seconds or one hundred seconds to execute; you want convenience. At that level it may make sense
to use an engineering environment likeAM.AB, or Mathematica. At the other extreme you may be
involved in doing a wide area weather prediction where a one-day run time, instead of a ten-day run time,
defines a useful versus a non-useful product. You might be developing a hospital laboratory system for
reporting test results to an emergency room physician where an answer in ten seconds versus an answer in
ten minutes can literally mean the difference between life or death for a patient. For programming at this
level one wants an efficient language. Since such projects can involve programming teams in different
countries, you want your language to be based on an international standard. Then you would choose to
program a language such as C++ or F90. Since most students have experienced only the first need level,
they tend to overvalue the first approach and devalue the second. This chapter will illustrate that the skills
needed for either approach are similar.

The structure of this chapter follows our usual progression to learning a language: Wieriaées
how can variables be combined irggpressionswhat constructs are available to control progitow,
and how ardunctionsdefined so that we can employ modularity. The basics are described in Chapter 1;
we assume you are familiar with the language basics described there. Initially, this chapter will parallel
the program composition section of Chapter 1 as applied in the C++, F90, andak languages, and
then it will bring in more advanced topics.

The features of F90 that are to be discussed here have been combined in a series of tables and placed
in Appendix B. It is expected that we will want to refer to those tables as we read this section as well
as later when we program. At times, references to C++ amadUB have been given to show the
similarities between most languages and to provide an aid for when having to interface in reading codes
in those languages.

4.1 Comments

In MATLAB and Fortran, a single charactet%in M ATLAB, ‘! ’ in FO0—located anywhere in a line of
text means that theemainderof the text on that line comprises the comment. In C, an entirely different

©2001 J.E. Akin 51

| Language | Syntax | Location |

MATLAB % comment (to end of line) anywhere
C++ /I comment (to end of line) anywhere
F90 ! comment (to end of line) anywhere
F77 * comment (to end of line) column 1

Table 4.1 Comment syntax

structure for comments occurs. Comments begin with the two-character seqiienaed end with the
nextoccurrence of the two-character sequerf¢e. In C, comments can occur anywhere in a program;
they can consume a portion of a line, temporarily interrupting a statement, or they can span multiple
lines of text. C++ allows the use of the C comment syntax, but has added a more popular two-character
sequence// 'to proceed a comment to the end of a line. Table 4.1 gives a summary of these comments
syntax. Itis also in the “Fortran 90 Overview” for quick reference. Samples of comment statements are
shown in Fig. 1.3, which gives the corresponding versions of the classic “hello world” program included
in most introductory programming texts.

4.2 Statements and Expressions

Before introducing statements and expressions, a word about documenting what you program. We en-
courage the heavy usage of comments. The three languages of concern here all allow comment lines and
comments appended to the end of statements. Their form is given above in Fig. 1.3 and Table 4.1.

The above languages currently allow variable names to contain up to 31 characters and allow the use
of the underscore,’, to aid in clarity by serving as a virtual space character, asyinname. Another
useful convention is to use uppercase first letters for words comprising part of a variable’snyaaee
Fortran and MTLAB allow a program line to contain up to 132 characters, while C++ has no limit on
line length. Since the old F77 standard was physically limited to holes punched in a card, it allowed only
a line length of 72 characters, a maximum name length of six characters, and did not allow the use of the
underscore in a name. In this text, we will usually keep line lengths to less than 65 characters in order to
make the programs more readable.

A statement in these three languages has a structure common to them all:

variable = expression

The built-in, or intrinsic, data types allowed for variables are summarized in Table 4.2. Additional user
defined types will be considered later. The expressions usually involves the use of arithmetic operators
and/or relational operators which are given in Tables 4.3 and 4.4, respectively. The order in which the
language applies these operators is called their precedence, and they are shown in Table 4.5. They are
also in the “Fortran 90 Overview” for quick reference.

In moving from MATLAB to high level languages one finds that it is necessary to define the type of
each variable. Fortran has a default naming convention for its variables and it allows an easy overriding
of that built in “implicit” convention. Since most engineering and mathematical publications used the
letters from “i” through “n” as subscripts, summation ranges, loop counters, etc. Fortran first was released
with implicit variable typing such that all variables whose name begin with the letters “i” through “n”,
inclusive, defaulted to integers, unless declared otherwise. All other variables default to be real, unless
declared otherwise. In other words, you can think of the default code as if it contained the statements:

IMPLICIT INTEGER (I-N) I F77 and F90 Default
IMPLICIT REAL (A-H, O-2) | F77 and F90 Default

The effect is automatic even if the statements are omitted. Explicit type declarations override any given
IMPLICIT types. For example, if the code had the above implicit defaults one could also explicitly
identify the exceptions to those default rules, such as the statements:

INTEGER :: Temp _row

2001 J.E. Akin 52
©

| Storage | MATLAB? | C++ | F90 | F77

byte char character:: character
integer int integer:: integer

single precision float real: real

double precision double | real*8: double precision
complex b | complex: complex
Boolean bool logical:: logical
argument parameter:: parameter
pointer * pointer::

structure struct type::

a8MATLAB 4 requires no variable type declaration; the only two distinct types ATIMB are strings and reals (which include
complex). Booleans are just Os and 1s treated as realsLM 5 allows the user to select more types.
bThere is no specific data type for a complex variable in C++; they must be created by the programmer.

Table 4.2 Intrinsic data types of variables

| Description | MATLAB?® | C++ [Fortran®
addition + + +
subtractiofi - - -
multiplication * and.* * *
division / and./ / /
exponentiation ~ and.” powd | **
remainder %
increment ++
decrement --
parentheses (expres-() 0 0
sion grouping)

awhen doing arithmetic operations on matrices inMAB, a period (: ') must be put before the operator if scalar arithmetic
is desired. Otherwise, MrLAB assumes matrix operations; figure out the difference betw€eand ‘.* '. Note that since matrix
and scalar addition coincide, na*’ operator exists (same holds for subtraction).

bFortran 90 allows the user to change operators and to define new operator symbols.

CIn all languages the minus sign is used for negation (i.e., changing sign).

din C++ the exponentiation is calculated by functipaw (z, y).

Table 4.3 Arithmetic operators

REAL :: Interest = 0.04 ! declare and initialize
CHARACTER (Len=8) :: Months _of _year(12)

We will also see that the programmer can define new data types and explicitly declare their type as well.
The F90 standard discourages the use ofIlRLICIT variables such as

IMPLICIT COMPLEX (X-2Z) I Complex variables
IMPLICIT DOUBLE PRECISION (A-H) ! Double Precision reals

and encourages the use of
IMPLICIT NONE

which forces the programmer to specifically declare the type of each and every variable used, and is
referred to astrong typing However, you need to know that such default variable types exist because
they are used in many millions of lines of older Fortran code and at some point you will need to use or
change such an existing program.

©2001 J.E. Akin 53

| Description | MATLAB [C++ [F90 [F77 |

Equal to == == == .EQ.

Not equal to "= I= = .NE.

Less than < < < LT.

Less or equal <= <= <= .LE.

Greater than > > > .GT.

Greater or equal >= >= >= .GE.
Logical NOT ~ ! .NOT. .NOT.
Logical AND & && | .AND. .AND.
Logical inclusive OR ! Il .OR. .OR.
Logical exclusive OR xor XOR. XOR.
Logical equivalent == == .EQV. .EQV.

Logical not equivalent "= I= .NEQV. | .NEQV.

Table 4.4 Relational operators (arithmetic and logical)

MATLAB C++ Operators | F90 Operators? F77 Operators
Operators
0 0ono->. 0 0
+ - | ++ - + *% *%
- * & (type)
sizeof
* | % * *
P + . . .
< <= > >= << >> Il 1
== "= < <= > => == [= < <= > EQ .NE.
>= .LT. .LE.
.GT. .GE.
~ == I= .NOT. .NOT.
& && .AND. .AND.
| I .OR. .OR.
= | .EQV. .NEQV. .EQV. .NEQV.
?:
= 4= = *= [=
%= &= "= |=
<<= >>=

aUser-defined unary (binary) operators have the highest (lowest) precedence in F90.
bThese are binary operators representing addition and subtraction. Unary op¢ratats have higher precedence.

Table 4.5 Precedence pecking order

©?2001 J.E. Akin 54

1] program main

2] ! Examples of simple arithmetic in F90

3] implicit none

4 integer :: Integer _Var _1, Integer _Var _2 ! user inputs
5 integer :: Mult —Result, Div. _Result, Add _Result

6 integer :: Sub _Result, Mod _Result

; real ;. Pow _Result, Sqrt _Result

9 print *, 'Enter two integers:’

10 read *, Integer _Var _1, Integer _Var _2

11

12 Add _Result = Integer _Var _1 + Integer _Var _2

13 print *, Integer _Var _1; + ', Integer _Var _2, ="', Add _
14

15 Sub _Result = Integer ~ _Var _1 - Integer _Var _2

16 print *, Integer _Var _1; - ', Integer _Var _2 ="' Sub _
17

18 Mult _Result = Integer _Var _1 * Integer _Var _2

19 print *, Integer _Var _1; * ', Integer _Var _2; ="', Mult _
20

21 Div _Result = Integer _Var _1 / Integer _Var _2

22 print *, Integer _Var _1; / ', Integer _Var _2, =", Div —
23

24 Mod _Result = mod (Integer _Var _1, Integer _Var _2) ! remai
25 print *, Integer _Var _1; mod ', Integer _Var _2; ="', Mod
26

27 Pow _Result = Integer _Var _1 ** Integer _Var _2 ! raise t
28 print *, Integer _Var _1; " ', Integer _Var _2, ="', Pow

29

30 Sqgrt _Result = sqrt(real(Integer _Var _1))

31 print *’Square root of ', Integer _Var _1; =, Sqart _Result
32

33] end program main ! Running produces:

34 ! Enter two integers:

35 125 + 4 =29

36 125 - 4 = 21

37 125 * 4 = 100

38 125 | 4 = 6, note integer

39 125 mod 4 = 1

40 125 ~ 4 = 3.9062500E+05

41 | Square root of 25 = 5.0000000

Figure 4.1 Typical Math and Functions in F90

An example program that employs the typical math operators in F90 is shown in Fig. 4.1. It presents
examples of addition (line 11), subtraction (line 14), multiplication (line 17), division (line 20), as well as
the use of the remainder or modulo function (line 23), exponentiation (line 26), and square root operators
(line 29). In addition it shows a way of inputing data from the default input device (line 9). The results
are appended as comments (lines 33-40). Observe that a program must include one and only one segment
that begins with the wordrogram (line 1) and ends with the linend program (line 32). If a name
is assigned to the program then it must be appended to both of these lines. Often the naineisf
used, as here, but it is not required as it is in C++ . A C++ formulation of this example is included for
comparison in the appendix as are several other examples from this chapter.

A special expression available inAvlLAB and F90 uses the colon operatoj ¢o indicate forming
a vector (row matrix) of numbers according to an arithmetic progression. ArLMs, the expression
bi:e meansthe vectdb (b+1) (b+2i) --- (b+ Ni)], where(b+ Ni) is the largest number less than
or equal to (greater than or equal ta i negative) the value of the varialde Thus,b means “beginning
value”,i means the increment, aedhe end value. The expressibe means that the increment equals
one. You can use this construct to excise a portion of a vector or matrix. For exa2@g, equals
the vector comprised by the second through fifth elements ahdA(3:5,i:j) creates a matrix from
the third, fourth, and fifth rows;*" through;** columns of the matrixa. F90 uses the convention of
b:e:i and has the same defaults whienis omitted. This operator, also known as gubscript triplef
is described in Table 4.6.

Of course, expressions often involve the use of functions. A tabulation of the built-in functions in
our languages is given in Table 4.7 and the F90 overview, as are all the remaining tables of this chapter.
The arguments of functions and subprograms have some important properties that vary with the language
used. Primarily, we are interested in how actual arguments are passed to the dummy arguments in the
subprogram. This data passing happens by either of two fundamentally different ways: by reference, or

©2001 J.E. Akin 55

B = Beginning,E = Ending,l =Increment

| Syntax | F90 | MATLAB | | Use | F90 | MATLAB |
Default B:E:l B:ILE Array subscript ranges yes yes
>B B: B: Character positions in a string yes yes
<E E E Loop control no yes
Full range : : Array element generation no yes
Table 4.6 Colon Operator Syntax and its Applications.

Description | MATLAB | C++ | F90 F77 |

exponential exp(x) exp(x) exp(x) exp(x)

natural log log(x) log(x) log(x) log(x)

base 10 log log10(x) log10(x) log10(x) log10(x)

square root sqrt(x) sqrt(x) sqrt(x) sqrt(x)

raise to power«{") X.r pow(x,r) X**r X**r

absolute value abs(x) fabs(x) abs(x) abs(x)

smallest integerx ceil(x) ceil(x) ceiling(x)

largest integesx floor(x) floor(x) floor(x)

division remainder | rem(x,y) fmod(x,y) mod(x,y) ¢ mod(X,y)

modulo modulo(x,y) 2

complex conjugate | conj(z) conjg(z) conjg(z)

imaginary part imag(z) imag(z) aimag(z)

drop fraction fix(x) aint(x) aint(x)

round number round(x) nint(x) nint(x)

cosine cos(X) cos(X) cos(X) cos(X)

sine sin(x) sin(x) sin(x) sin(x)

tangent tan(x) tan(x) tan(x) tan(x)

arc cosine acos(x) acos(x) acos(x) acos(x)

arc sine asin(x) asin(x) asin(x) asin(x)

arc tangent atan(x) atan(x) atan(x) atan(x)

arc tangenit atan2(x,y) atan2(x,y) atan2(x,y) atan2(x,y)

hyperbolic cosine cosh(x) cosh(x) cosh(x) cosh(x)

hyperbolic sine sinh(x) sinh(x) sinh(x) sinh(x)

hyperbolic tangent | tanh(x) tanh(x) tanh(x) tanh(x)

hyperbolic arc cosing acosh(x)

hyperbolic arc sine | asinh(x)

hyperbolic arctan atanh(x)

apiffer for z < 0.

batan2(x,y) is used to calculate the arc tangentigfy in the range—m, +]. The one-argument functioatan(x)
computes the arc tangentefin the rangg—= /2, +7/2].

Table 4.7 Mathematical functions

by value. One should understand the difference between these two mechanisms.

“Passing by reference” means that the address in memory of the actual argument is passed to the
subprogram instead of the value stored at that address. The corresponding dummy argument in the
subprogram has the same address. That is, both arguments refer to the same memory location so any
change to that argument within the subprogram is passed back to the calling code. A variable is passed
by reference to a subroutine whenever it is expected that it should be changed by the subprogram. A
related term is “dereferencing”. When you dereference a memory address, you are telling the computer
to get the information located at the address. Typically, one indirectly gives the address by citing the

©2001 J.E. Akin 56

Description | C++ | F90 | F77 | MATLAB

Conditionally execute statements if if if if
{} end if end if end
Loop a specific number of times | for k=1:n do k=1,n do # k=1,n for k=1:n
{} end do # continue end
Loop an indefinite number of times ~ while do while — while
{} end do — end
Terminate and exit loop break exit go to break
Skip a cycle of loop continue cycle go to —
Display message and abort error() stop stop error
Return to invoking function return return return return
Conditional array action — where — if
Conditional alternate statements else else else else
else if elseif elseif elseif
Conditional array alternatives — elsewhere — else
— — — elseif
Conditional case selections switch { } | select case if if
end select end if end

Table 4.8 Flow Control Statements.

name of a pointer variable or a reference variable.

“Passing by value” means that the value of the actual argument stored at its address in memory is
copied and the copy is passed to the dummy argument in the subprogram. Thus any change to the
argument within the subprogram ii®t passed back to the calling code. The two passing methods do
not clearly show the intended use of the argument within the subprogram. Is it to be passed in for use
only, passed in for changing and returned, or is it to be created in the subprogram and passed out for use
in the calling code? For additional safety and clarity modern languages provide some way to allow the
programmer to optionally specify such intent explicitly.

Both C++ and MATLAB use the pass by value method as their default mode. This means the value
associated with the argument name, say_name, is copied and passed to the function. That copying
could be very inefficient if the argument is a huge array. To denote that you want to have the C++ argu-
ment passed by reference you must precede the argument name with an ampersand¥&j enane,
in the calling code. Then within the subprogram the corresponding dummy variable must be derefer-
enced by preceding the name with an asterisk (*),"®ug. _name. Conversely, Fortran uses the passing
by reference method as its default mode. On the rare occasions when one wants to pass by value simply
surround the argument name with parentheses, a&gy.fame), in the calling code. In either case it is
recommended that you cite each argument with the optional “intent” statement within the subprogram.
Examples of the two passing options are covered in Sec. 4.5.

4.3 Flow Control

The basic flow control constructs present in our selected engineering languadespare repetitive
execution of a block of statementsandconditionals— diversions around blocks of statements. A typical

set of flow control statement types are summarized in Table 4.8. Most of these will be illustrated in detail
in the following sections.

©2001 J.E. Akin 57

4.3.1 Explicit Loops

The following discussion will introduce the important concept of loops. These are required in most
programs. However, the reader is warned that today the writing of explicit loops are gemeitdtg

most efficient way to execute a loop operation in Fortran90 amatiLMBe . Of course, older languages

like F77 and C do require them, so that the time spent here not only covers the explicit loop concepts but
aids one in reading older languages. Our pseudocode for the common loops is:

©2001 J.E. Akin 58

| Loop MATLAB C++ Fortran
Indexed loop for index=matrix for (init;test;inc) do index=b,e,i
statements statements
end statements end do
Pre-test loop while test while (test) { do while (test)
statements statements statements
end end do
Post-test loop do { do
statements statements
} while (test) if (test) exit
end do

Table 4.9 Basic loop constructs

| Loop

| Pseudocode

Indexed loop

for index=b,i,e
statements
end for

Pre-test loop

while (test)
statements
end while

Post-test loop

do
statements
if test exit
end do

In engineering programming one often needs to repeatedly perform a group of operations. Most
computer languages have a statement to execute this powerful and widely-used feature. In Fortran this
is the DOstatement, while in C++ and MLAB it is the FORstatement. This one statement provides
for the initialization, incrementing and testing of the loop variable, plus repeated execution of a group of
statements contained within the loop. In Fortran77, the loop always cites a label number that indicates
the extent of the statements enclosed in the loop. This is allowed in F90, but not recommended, and is
considered obsolete. Instead, D DOndicates the extent of the loop, and the number label is omitted
in both places. F90 does allow one to give a name to a loop. Then the structure is denetEaBO
followed byEND DO NAMExamples of the syntax for these statements for the languages of interest are

given in Table 4.9.

A simple example of combining loops and array indexing is illustrated in Figs. 4.2 and 4.3. Note in
Fig. 4.2 that the final value of a loop counter (callateger_Var here) upon exiting the loop (line 10)
can be language or compiler dependent despite the fact that they are same here. In Fig. 4.3, we introduce
for the first time a variable with a single subscript (line 5) and containing five numbers (integers) to be
manually initialized (lines 8-10) and then to be listed in a loop (lines 12-15) over all their values. Note
that C++ stores the first entry in an array at position zero (see appendix listing),A# uses position
one, and F90 defaults to position one.
C++ and Fortran 90 allow a special option to create loops that run “forever.” These could be used, for
example, to read an unknown amount of data until terminated, in a non-fatal way, by the input statement.
In C++, one omits the three loop controls, such as

{/l forever loop

end forever loop

for (;
5)0//3 _block

while in F90, one simply omits the loop control and gives only the DO command:

do ! forever

©2001 J.E. Akin

59

1] program main
2] ! Examples of a simple loop in F90
3] implicit none
4 integer Integer _Var
5
6 do Integer _Var = 04,1
7 print *, 'The loop variable is:’, Integer _Var
g end do ! over Integer _Var
10 print *, 'The final loop variable is:’, Integer _Var
11
12] end pro?ram main ! Running produces:
13] ! The loop variable is: O
14] ! The loop variable is: 1
15] ! The loop variable is: 2
16] ! The loop variable is: 3
17] ! The loop variable is: 4
18] ! The final loop variable is: 5 <- NOTE
Figure 4.2 Typical Looping Concepts in F90
1] program main
2] | Examples of simple array indexing in F90
3] implicit none
4 integer, parameter :: max = 5
5 integer Integer _Array(max) ! =(/ 10 20 30 40 50 /), or set below
6 integer loopcount
7
8 Integer _Array(1) = 10 ! F90 index starts at 1, usually
9 Integer _Array(2) = 20 ; Integer _Array§3g = 30
10 Integer _Array(4) = 40 ; Integer _Array(5) = 50
11
12 do loopcount = 1, max I & means continued
13 print *, 'The loop counter is: ', loopcount, &
14 ' with an array value of: ’Integer _ Array(loopcount)
%g end do ! over loopcount
%g print *, 'The final loop counter is: ', loopcount
19] end program main
20] ! Running produces:
21] | The loop counter is: 1 with an array value of: 10
22] | The loop counter is: 2 with an array value of: 20
23] ! The loop counter is: 3 with an array value of: 30
24] ! The loop counter is: 4 with an array value of: 40
25] ! The loop counter is: 5 with an array value of: 50
26] ! The final loop counter is: 6

Figure 4.3 Simple Array Indexing in F90

loop _ block
end do ! forever
Most of the time, an infinite loop is used aso@p_ while_true or aloop_until _true construct. These
will be considered shortly.

4.3.2 Implied Loops

Fortran and MTLAB have shorthand methods for constructing “implied loops.” Both languages offer
the colon operator to imply an incremental range of integer values. Its syntax and types of applications
are given in Table 4.6 (page 56). The allowed usages of the operator differ slightly between the two
languages. Note that this means that the loop controls are slightly different in thiattbatrol employs
commas instead of colons. For example, two equivalent loops are

| Fortran | M ATLAB |
do k=B,E,l for k=B:l:E
AK) = k2 AK) = k A2
end do end

Fortran offers an additional formal implietb loop that replaces théo andend do with a closed
pair of parentheses in the syntax:

(object, k = B,E,l)

©2001 J.E. Akin 60

where again the increment, defaults to unity if not supplied. The above impligal is equivalent to the
formal loop

do k=B,E,l

define object

end do
However, the object defined in the implied loop can only be utilized for four specific Fortran operations:
1)read actions2)print andwrite actions,3)data variables (not value) definitions, addldefining
array elements. For example,

print *, 24*[(-1, k=1,10,3) ! 3, 15, 27, 39 _

read *, (A(j,:), j=1,rows) ! read A by rows, sequentially
The implieddo loops can be nested to any level like the standiardtatement. One simply makes the
inner loop the object of the outer loop, so that

((object _j _k, j=min, max), k=k1,k2,inc)

implies the nested loop

do k=k1,k2,inc
do j=min, max
use object _j _k
end do ! over j
end do ! over k
For example,

print *, (((A(k{:B(j)+3), j=1,5), k=1,max)

I read array__z rows in each plane

read *, (((A(i,),k), j=1,cols), i=1,rows), k=1,max)
Actually, there is even a simpler default form of impligds for reading and writing arrays. That default
is to access arrays by columns. That is, process the leftmost subscript first. Thus, for an array with three
subscripts,

read *, A <= read *, (((A(i,j,k), i=1,rows), j=1,cols), k=1,planes)

Both languages allow the implied loops to be employed to create an array vector simply by placing
the implied loop inside the standard array delimit symbols. For example, we may want an array to equally
distribute N + 1 points over the distance from zerofn

F90: X
MATLAB: X

(I(k,k=0,N)/)* D/(N+1)
[O:N] * D / (N+1)

which illustrates that MTLAB allows the use of the colon operator to define arrays, but F90 does not.

In addition to locating elements in an array by the regular incrementing of loop variables, both
Fortran90 and MTLAB support even more specific selections of elements: by random location via vector
subscripts, or by value via logical masks suchvasre andif in F90 and MATLAB, respectively.

4.3.3 Conditionals

Logic tests are frequently needed to control the execution of a block of statements. The most basic
operation occurs when we want to do something when a logic test gives a true answer. We call that a
simplelF statement. When the test is true, the program executes the block of statements following the
IF . Often only one statement is needed, so C++ and Fortran allow that one statement to end the line that
begins with thedF logic. Frequently we wilhestanothenF within the statements from a higher level
IF . The common language syntax forms for the simplere given below in Table 4.10, along with the
examples of where a second true group is nested inside the first as shown in Table 4.11.

The next simplest case is where we need to do one thing when the answer is true, and a different
thing when the logic test is false. Then the syntax changes simply 16 aftrue group } ELSE
{false group } mode of execution. The typic#-ELSE syntaxes of the various languages are given
in Table 4.12. Of course, the above statement groups can containfotbelF-ELSE statements nested
within them. They can also contain any valid statements, includdgr FORIoops.

The most complicated logic tests occur when the number of cases for the answer go beyond the two
(true-false) of theF-ELSE control structure. These multiple case decisions can be handled with the
ELSEIF-ELSE control structures whose syntax is given in Table 4.13. They involve a sequence of logic

©2001 J.E. Akin 61

| M ATLAB | Fortran | C++ |

if | _expression IF (I _expression) THEN if (I _expression)
true group true group
end END IF true group;
IF (I _—expression) true statement if (I _expression)
true statement;

Table 4.10Q IF Constructs. The quantity_expression means a logical expression having a value that
is eitherTRUEOf FALSE. The termtrue statement or true group means that the statement or group
of statements, respectively, are executed if the conditional iif tletatement evaluates TRUE

| MATLAB | Fortran | C++ |
if | _expressionl IF (I _expressionl) THEN if (I _expressionl)
true group A true group A
if | _expression2 IF (I _—expression2) THEN true group A
true group B true group B if (I _expression2)
end END IF
true group C true group C true group B
end ND IF
statement group D statement group D true group C
statement group D
Table 4.1 NestedF Constructs.
MATLAB | Fortran | C++
if | _expression IF (I _—expression) THEN if (I _expression)
true group A true group A
else ELSE true group A
false group B false group B
end END IF else

alse group B

Table 4.12 Logical IF-ELSE Constructs.

tests, each of which is followed by a group of statements that are to be executed if, and only if, the test
answer is true. There can be any number of such tests. They are terminated&igEamoup of default
statements to be executechibneof the logic tests are true. Actually, ti&# SE action is optional. For
program clarity or debugging, it should be included even if it only prints a warning message or contains
a comment statement. Typical “if” and “if-else” coding is given in Figs. 4.4, 4.5, and 4.6. Figure 4.4
simply uses the three logical comparisons of “greater than” (line 9), “less than” (line 12), or “equal to”
(line 15), respectively. Figure 4.5 goes a step further by combining two tests with a logical “and” test
(line 9), and includes a second else branch (line 11) to handle the case whigreidtfalse. While the

input to these programs were numbers (line 7), the third example program in Fig. 4.6 accepts logical
input (lines 6,8) that represents either true or false values and carries out Boolean operations to negate
an input (viaNOTin line 9), or to compare two inputs (with a&NDin line 11, orORin line 17, etc.) to
produce a third logical value.

Since following the logic of manyF-ELSEIF-ELSE statements can be very confusing both the C++
and Fortran languages allonCaSEselection or “switching” operation based on the value (numerical or
character) of some expression. For any allowed spedifigEvalue, a group of statements is executed.
If the value does not match any of the specified allo@asEvalues, then a default group of statements
are executed. These are illustrated in Table 4.14.

©2001 J.E. Akin 62

M ATLAB | Fortran | C++ |

if | _expressionl IF (I _expressionl) THEN if (I _expressionl)
true group A true group A
elseif | _expression2 ELSE IF (I _expression2) THEN true group A
true group B true group B
elseif | _expression3 ELSE IF (I _expression3) THEN else if (I _expression2)
true group C true group C
else ELSE true group B
default group D default group D
end END IF else if (I _expression3)

true group C
else

?efault group D

Table 4.13 Logical IF-ELSE-IF Constructs.

1] program main

2] | Examples of relational "if* operator in F90

3] implicit none]

gl integer :: Integer _Var _1, Integer _Var _2 ! user inputs

6 print *, 'Enter two integers:’

7 read *, Integer _Var _1, Integer _Var _2

8

9 if (Integer _Var _1 > Integer _Var_2) &

10 print *, Integer _Var _1; is greater than ’, Integer _Var _2
11

12 if (Integer _Var _1 < Integer _Var_2) &

13 print *, Integer _Var _1; is less than ’, Integer _Var _2
14

15 if (Integer _Var _1 == Integer _Var_2) &

16 print *, Integer _Var _1; is equal to ’, Integer _Var _2
17

18] end program main

19

20] ! Running with 25 and 4 produces:

21] ! Enter two integers:

22] ! 25 is greater than 4

Figure 4.4 Typical Relational Operators in F90

1] program main

2] ! llustrate a simple if-else logic in F90

3] implicit none

4 integer Integer _Var

5

6 print *’Enter an integer: ’

7 read *, Integer _Var

8

9 if (Integer _Var > 5 .and. Integer _Var < 10 R then

10 | print *, Integer _Var, ' is greater than 5 and less than 10’
11 else

12 print *, Integer _Var, ' is not greater than 5 and less than 10’
13 end if ! range of input

14

12 end program main

1 !

17] ! Running with 3 gives: 3 is not greater than 5 and less than 10

18] ! Running with 8 gives: 8 is greater than 5 and less than 10

Figure 4.5 Typical If-Else Uses in F90

Fortran90 offers an additional optional feature cattedstruct namethat can be employed with the
abovelF andSELECT CASEonstructs to improve the readability of the program. The optional name,
followed by a colon, precedes the key wotHsandSELECT CASETo be consistent, the name should
also follow the key word€ND IF or END SELECTwhich always close the constructs. The construct
name option also is available for loops where it offers an additional pair of control actions that will be
explained later. Examples of these optional F90 features are given in Table 4.15.

While C++ and MATLAB do not formally offer this option, the same enhancement of readability can

©2001 J.E. Akin 63

Figure 4.6 Typical Logical Operators in F90

1] program main

2] ! Examples of Logical operators in F90

3] implicit none

4 logical :: Logic _Var _1, Logic _Var _2

5 print *'Print logical value of A (T or F)’

6 read *, Logic _Var _1

7 print *'Print logical value of B (T or F)’

8 read *, Logic _Var _2

9 print *'NOT A is ', (.NOT. Logic _Var _1)
10

11 if (Logic _Var _1 .AND. Logic _Var _2) then
12 print *, '’A ANDed with B is true’

13 else

14 print *, 'A ANDed with B is false’

15 end if ! for AND

16

17 if (Logic _Var _1 .OR. Logic _Var _2) then
18 print *, '’A ORed with B is true’

19 else

20 print *, '’A ORed with B is false’

21 end if ! for OR

22

23 if (Logic _Var _1 .EQV. Logic _Var _2) then
24 print *, 'A EQiValent with B is true’

25 else

26 print *, 'A EQiValent with B is false’

27 end if ! for EQV

28

29 if (Logic _Var _1 .NEQV. Logic _Var _2) then
30 print *, 'A Not EQiValent with B is true’

31 else

32 print *, ’A Not EQiValent with B is false’

33 end if | for NEQV

34

35] end program main

36] ! Running with T and F produces:

37] ! Print logical value of A (T or F): T

38] ! Print logical value of B (T or F): F

39] ! NOT A'is F

40] ! A ANDed with B is false

41] ! A ORed with B is true

42] | A EQiValent with B is false

43] ! A Not EQiValent with B is true

F90 |

C++

SELECT CASE (expression)
CASE (value 1)
group 1
CASE (value 2)
group 2

CASE (value n)
group n
CASE DEFAULT
default group
END SELECT

switch (expression)

case value 1 :
grou 1
reak;

case value 2 :

roup 2
reak;

case value n :
group n
break;
default:
default group
break;

Table 4.14 Case Selection Constructs.

be achieved by using the trailing comment feature to append a hame or description at the beginning and

end of these logic construct blocks.

Both C++ and Fortran allow statement labels and provide controls to branch to specific labels. Today
you are generally advisabt to use aGO TGand its associated label! However, they are common in
many F77 codes. There are a few cases whe&3© aras still considered acceptable. For example, the

pseudowHILEconstruct of F77 requires@O TO

©2001 J.E. Akin

64

F90 NamedIF FOONamedSELECT

name: IF (logical _1) THEN name: SELECT CASE (expression)
true group A CASE (value 1)
ELSE IF (logical _2) THEN group 1
true group B CASE (value 2)
ELSE group 2
default group C CASE DEFAULT
ENDIF name default group
END SELECT name

Table 4.15 F90 Optional Logic Block Names.

| Fortran | Ct+
DO 1 .. for (...) {
DO 2 ... for (...) {
IF (disaster) THEN it (disaster)
&o 103 go to error
END IF
2 END DO }
1 END DO _
3 next statement error:

Table 4.168 GO TBreak-out of Nested Loops. This situation can be an exception to the general recom-
mendation to avoisO TGstatements.

| F77 | F90 | C++ |
DO1 | = 1N DO | = 1,N for (i=1; i<n; i++)

IF (skip condition) THEN IF (skip condition) THEN if (skip condition)
GO TO 1 CYCLE ! to next | continue; // to next

ELSE ELSE else if
false group false group false group

END IF END IF end

1 continue END DO }

Table 4.17 Skip a Single Loop Cycle.

initialize test

IF (I _expression) THEN
true statement group
modify logical value

TheGO Taran also be effectively utilized in both Fortran and C++ to break out of several nested loops.
Thisis illustrated in Table 4.16. The “break-out” construct can be used in the situation when, as a part of
a subroutine, you wanted the program exit the loop and also exit the subroutine, returning control to the
calling program. To do that, one would simply replace®@@ TGstatement with th@ETURNstatement.
In F90, one should also append the comment “! to calling program” to assist in making the subroutine
more readable.

You may find it necessary to want to skip a cycle in loop execution and/or exit from a single loop.
Both Fortran and C++ provide these control options without requiring the useof &0To skip a loop
cycle, Fortran90 and C++ use the statem@&WSLEandcontinue , respectively, an&XIT andbreak
to abort a loop. These constructs are shown in Tables 4.17 and 4.18. Other form&of then F77
were declared obsolete in F90, and should not be used. The Fortran abort examples could also use the
RETURNoption described above in the rare cases when it proves to be more desirable or efficient.

As mentioned earlier, F90 allows the programmer to use “nardetonstructs. In addition to im-

©2001 J.E. Akin 65

F77 | F90 | C++
DO11=1N DO | = 1,N for (i=1; i<n; i++)
IF (exit condition) THEN IF (exit condition) THEN
GO TO 2 EXIT ! this do if (exit condition
ELSE ELSE break;// out of loop
false group false group else if
END IF END IF false group
1 CONTINUE END DO end
2 next statement next statement
next statement

Table 4.18 Abort a Single Loop.

main: DO ! forever
test: DO k=1,k _max
third: DO m=m _max,m_min,-1
IF (test condition? THEN
CYCLE test ! loop on k
END IF
END DO third ! loop on m
fourth; DO n=n _min,n _max,2
IF (main condition) THEN
EXIT main ! forever loop
END DO fourth ! on n
END DO test ! over k
END DO main

next statement

Table 4.19 F90DG Named for Control.

proving readability, this feature also offers additional control over nested loops because we can associate
theCYCLEandEXIT commands with a specific loop (Table 4.19). Without the optional nam&\theE
andEXIT commands act only on the inner-most loop in which they lie. We will see later that Fortran90
allows another type of loop calladHEREhat is designed to operate on arrays.

4.3.3.1 Looping While True or Until True

It is very common to need to perform a loop so long as a condition is true, or to run the loop until
a condition becomesue . The two are very similar and both represent loops that would run forever
unless specifically terminated. We will refer to these two approaches-isE loops andUNTIL loops.
TheWHILElogic test is made firstin order to determine if the loop will be entered. Clearly, this means that
if the logic test idfalse the first time it is tested, then the statement blocks controlled bwthie E are

never executed. If thevHILEloop is entered, something in the loop must eventually change the value of

a variable in the logic test or the loop would run forever. Once a change causgsiitilogic test to be

false control is transferred to the first statement following ¥gILE structure. By way of comparison,
anUNTIL loop is always entered at least once. Upon entering the loop, a beginning statement group is
executed. Then the logic test is evaluated. If the test restitiés, the loop is exited and control is
passed to the next statement after the group. If the tésgsés , then an optional second statement group

is executed before the loop returns to the beginning statement group. The pseudo-code for these two
similar structures are given as follows :

| while true | until true |
logic _variable = true logic _variable = false
begin: begin:
if (logic _variable) then % true statements)
true _group) if (logic _variable) then
re-evaluate logic _variable exit the loop
go to begin else % false
else % false false _group
exit loop re-evaluate logic _variable
end if go to begin
end if
©2001 J.E. Akin 66

Since these constructs are commonly needed, several programming languages offer some support for
them. For example, Pascal haREPEAT UNTILcommand and C++ has til>WHILE pair for the until-

true construct. For the more common while-true loops, C++ antdlMB offer awHILEcommand, and

Fortran 90 includes theO WHILEF77, however, only has the obsoléte GO T(pairs as illustrated in

a previous example. Many current programmers considanthieE construct obsolete because it is less

clear than @GEXIT pair or a “for-break” pair. Indeed, the FO0 standard has declared¢h&VvHILE

as obsolete and eligible for future deletion from the language. We can see how the loop-abort feature of
C++ and F90 includes both thigHILEandUNTIL concepts. For example, the F90 construct

initialize logical _variable

DO WHILE (logical _variable) ! is true
true _group
re-evaluate logical _variable

END DO ! while true

is entirely equivalent to the aborted endless loop

initialize logical _variable

DO ! forever while true
IF (.NOT. logical _variable) EXIT ! as false
true _group
re-evaluate logical _variable

END DO ! while true

Likewise, a minor change includes the UNTIL construct.

DO ! forever until true
beginning statements and initialization

IF (logical _expression) EXIT ! as true
false group)
re-evaluate logical _variable

END DO ! until true

When approached in the C++ language, we havaMtAé_Eloop.

initialize logical _variable
while (logical _variable)

{ Il'is true

true _group

re-evaluate logical _variable

} /I end while true

Recalling the standarfdr syntax,
for (expr _1; expr _2; expr _3)

true _group
} /I end for
could be viewed as equivalent to the absvigILEin for form.
expr _1;
while (expr _2)

{ Il'is true
true _group

expr _3;
} /I end while true
If one omits all thredor expressions, then it becomes an “infinite loop” or a “do forever” which can

represent &/HILEor UNTIL construct by proper placement of theak command. Furthermore, C has
thedo-while construct that is equivalent to Pasc&BPEATUNTIL.

do // forever until true

statements
evaluate logical —variable
while (logical _variable) // is true

The syntax for the classic&8V/HILE statements in C++, Fortran andAVLAB are given in Table 4.20.
Fortran90 has declared ti®® WHILEas obsolete, and recommends B@-EXIT pair instead! Using
infinite loops with clearly aborted stages is a less error-prone approach to programming.

©2001 J.E. Akin 67

MATLAB | C++
initialize test initialize test
while | _expression while (I _expression)
true group
change test true group
end change test
| F77 | F90
initialize test initialize test
continue) do while (I _expression)
IF (I _—expression) THEN true group
true group change test
change test end do
go to #
END IF
Table 4.2Q Looping While a Condition is True.
Function
MATLAB @ C++ Fortran
Type
program statements main(argc,char **argv) program main
[yl.. yn -.,@m) { type y
end o fl e] statements type al,...type am
= f(al,l,am); statements
g y = fEal,...,amg
call s(al,....am
end program
subroutine void f subroutine s(ai,...,am)
(type ail,...,type am) type al,...type am
statements
statements end
function function [rl...rn] type f (type al,...,type am) function f(al,...,am)
~f(al,....am) { statements} type f
statements type al,...type am
staéements
en

aEvery function or program in MTLAB must be in separate files.

Table 4.21 Function definitions. In each case, the function being defined is ndraed is called with
margumentsl,...,am

4.4 Subprograms

The concept of modular programming requires the use of numerous subprograms or procedures to execute
independent segments of the calculations or operations. Typically, these procedures fall into classes such
as functions, subroutines, and modules. We will consider examples of the procedures for each of our
target languages. These are shown in Table 4.21.

Recall that Table 8.6 compared several intrinsic functions that are common to both F9xanasV
For completeness, all of the Fortran90 functions are listed both alphabetically and by subject in Ap-
pendix B. Similar listings for MTLAB can be found in the MrLAB Primer.

4.4.1 Functions and Subroutines

Historically, a function was a subprogram that employed one or more input arguments and returned a
single result value. For example, a square root or logarithm function would accept a single input value
and return a single result. All of the languages of interest allow the user to define such a function, and they

©2001 J.E. Akin 68

| One-Input, One-Result Procedures

MATLAB | function out = name (in)
F90 function name (in) ! name = out

function name (in) result (out)

C++ name (in, out) *

| Multiple-Input, Multiple-Result Procedures
MATLAB | function [inout, out2] = name (inl, in2, inout)
F90 subroutine name (inl, in2, inout, out2)

C++ name(inl, in2, inout, out2) *

« Other arrangements acceptable
Table 4.22 Arguments and return values of subprograms.

all provide numerous intrinsic or built-in functions of this type. As you might expect, such a procedure
is called afunctionin C++, Fortran and MTLAB. As an example of such a procedure, consider the
calculation of the mean value of a sequence of numbers defined as

1 n
mean:—g Tk .
n

k=1

In Fortran90, a subprogram to return the mean (average) could be

function mean(x)
! mean = sum of vector x, divided by its size
real :: mean, x()
mean = sum(x)/size(x)

end function mean
Note that our function has employed two other intrinsic functiosise to determine the number of
elements in the array, andsum to carry out the summation of all elementsinQOriginally in Fortran,
the result value was required to be assigned to the name of the function. That s still a valid option in F90,
but today it is considered better practice to specify a result value name to be returned by the function.
Themean function is a MATLAB intrinsic and can be used directly.

To illustrate the use of a result value, consider the related “median” value in F90.

Tunction mid '_valueﬁx) result(median)
! return the middle value of vector x
real :: median, x()
median = x(size(x)/2) ! what if size = 1 ??
end function mid _value
To apply these two functions to an array, sayve would simply writey _ave = mean(y) , andy _mid
= mid _value(y) , respectively. While Fortran allows a “function” to return only a single object, both
C++ and MATLAB use that subprogram name to return any number of result objects. Fortran employs
the name “subroutine” for such a procedure. Such procedures are allowed to have multiple inputs and
multiple outputs (including none). The syntax of the first line of these two subprogram classes are shown
in Table 4.22. Note that a typical subprogram may have no arguments, multiple input argunignts (
in2, inout), multiple result argumentdnput, out2), and arguments that are used for both input
and result usagénput). These example names have been selected to reflect the fact that a programmer
usually intends for arguments to be used for input only, or for result values only, or for input, modification,
and output. Itis considered good programming practice to declare such intentions to aid the compiler in
detecting unintended uses. F90 providesINEENT statement for this purpose, but does not require its
use.

Having outlined the concepts of subprograms, we will review some presented earlier and then give
some new examples. Figure 1.3 presented a clipping function which was earlier expressed in pseudocode.
A corresponding Fortran implementation of such a clipping function is given in Fig. 4.7. Note that it is
very similar to the pseudocode version.

©2001 J.E. Akin 69

1 program main

2] ! clip the elements of an array

3 implicit none

4 real, parameter " Iimit =3

5 |nteger parameter :: n= 5

6 real (n), x(n)

71! Defme X values that WI| be clipped

8 X = (/ (8 + 3.*k, k = 1,n) /) ! an implied loop
10

do i =

y(@) = Cllp (x(i), limit)
11 end do
12 print *, x
13 print *, y
14
15 contains ! methods
16
17 function clip (x, L) result (c)
18] ! ¢ = clip(x, L) - clip the variable x, output
19] ! x = scalar variable, ~ input
20] ! L = limit of the cllpper, input
21] !
22 real, intent(in) :: x, L ! variable types
23 real icC ! variable types
24 intent (in) X, ! argument uses
25 it (abs(x) <= L) then ! abs of x less than or equal L
26 c =X ! then use x
27 else | absolute of x greater than L ?
28 ¢ = sign(L,x) I sign of x times L
29 end if ! of value of x
30 end function ! clip
31 end program main
32] !
33] ! produces:
34] ! -5.0000000 -2.0000000 1.0000000 4.0000000 7.0000000
35] ! -3.0000000 -2.0000000 1.0000000 3.0000000 3.0000000

Figure 4.7: Clipping a Set of Array Values in F90

For the purpose of illustration an alternate F90 version of the Game of Life, shown earlier in Chapter 1
as pseudocode, is given in the assignment solutions section. Clearly we have not introduced all the
features utilized in these example codes so the reader should continue to refer back to them as your
programming understanding grows.

A simple program that illustrates program compositiomisximum.f90 , which asks the user to
specify several integers from which the program finds the largest. It is given in Fig. 4.8. Note how
the main program accepts the user input (lines 15,20), withridént function (line 22) finding the
maximum (lines 25-34). Perhaps modularity would have been better served by expressing the input
portion by a separate function. Of course, this routine is not really needed since F90 provides intrinsic
functions to find maximum and minimum valuesakval, minval) and their locations in any array
(maxloc, minloc). A similar C++ program composition is shown for comparison in the appendix.

©2001 J.E. Akin 70

1] program maximum ! of a set of integers (see intrinsic maxval)
2 implicit none

3 interface ! declare function interface protype

4 function maxint (input, input _length) result(max)
5 integer, intent(in) :: input _length, input(:)

6 integer T max

7 end function ! maxint

g end interface

10 integer, parameter :: ARRAYLENGTH=100

11 integer o integers(ARRAYLENGTH);

12 integer D0,om;

13

14 ! Read in the number of integers

15 print *’Find maximum; type n: ’; read * n

16 If (n > ARRAYLENGTH .or. n <0) &

17 stop 'Value you typed is too large or negative.’
18

19 doi=1n ! Read in the user's integers
20 print *, ‘Integer ’, i, '?"; read *, integers(i)

21 end do ! over n values

22 print *, 'Maximum: ', maxint (integers, n)

%3 end program maximum

4

25] function maxint (input, input _length) result(max)
26] ! Find the maximum of an array of integers

27 integer, intent(in) :: input _length, input(:)

28 integer :i, max

29

30 max = input(1); ! initialize

31 do i = 1, input _length ! note could be only 1
32 if (input(i) > max) max = input(i);

33 end do ! over values

34] end function maxint ! produces this result:
35] ! Find maximum; type n: 4

36] ! Integer 1? 9

37] ! Integer 2? 6

38] ! Integer 3? 4

39] ! Integer 4? -99

40] ! Maximum: 9

Figure 4.8 Search for Largest Value in F90

©2001 J.E. Akin 71

| Global Variable Declaration |
MATLAB | global list of variables

F77 common/set_name/ list of variables
Fo0 module set_name
save

type (type_tag) :: list of variables
end module set_name
C++ extern list of variables

| Access to Global Variables |
MATLAB | global list of variables

F77 common/set_name/ list of variables

F90 use set_nameponly subset of variables
use set_name?2 list of variables

C++ extern list of variables

Table 4.23 Defining and referring to global variables.

4.4.2 Global Variables

We have seen that variables used inside a procedure can be thought of as dummy variable names that
exist only in the procedure, unless they are members of the argument list. Even if they are arguments to
the procedure, they can still have names different from the names employed in the calling program. This
approach can have disadvantages. For example, it might lead to a long list of arguments, say 20 lines,
in a complicated procedure. For this and other reasons, we sometimes desire to have variables that are
accessible by any and all procedures at any time. These are gidleal variablesregardless of their

type.

Generally, we explicitly declare them to be global and provide some means by which they can be
accessed, and thus modified, by selected procedures. When a selected procedure needs, or benefits from,
access to a global variable, one may wish to control which subset of global variables are accessible by the
procedure. The typical initial identification of global variables and the ways to access them are shown in
Table 4.23, respectively.

An advanced aspect of the concept of global variables are the topics of inheritance and object-oriented
programming. Fortran90, and other languages like C++, offer these advanced concepts. In F90, inheri-
tance is available tomodule and/or a maimprogram and their “internal sub-programs” defined as those
procedures following aontains statement, but occurring before amd module ortheend program
statement. Everything that appears beforectirgains statement is available to, and can be changed by,
the internal sub-programs. Those inherited variables are more than local in nature, but not quite global;
thus, they may be thought of &ritorial variables. The structure of these internal sub-programs with
inheritance is shown in Fig. 4.9

Perhaps the most commonly used global variables are those necessary to calculate the amount of
central processor unit (cpu) time, in seconds, that a particular code segment used during its execution.
All systems provide utilities for that purpose but some are more friendly than others.Ad provides
a pair of functions, calledc andtoc , that act together to provide the desired information. To illustrate
the use of global variables we will develop a F90 module caited_toc to hold the necessary variables
along with the routinesc andtoc . Itis illustrated in Fig. 4.10 where the module constants (lines 2-6)
are set (lines 17, 26) and computed (line 28) in theitwenal functions.

©2001 J.E. Akin 72

module or program name_inherit
Optional territorial variable, type specification, and cal
contains

S

subroutine Internal_ 1
territorial specifications and calls
contains

subroutine Internal 2
local computations
end subroutine Internal 2

subroutine Internal3
local computations
end subroutine InternalL3

end subroutine Internal 1

end name.inherit

Figure 4.9 F90 Internal Subprogram Structure.

1] module tic _toc

2] ! Define global constants for timing increments

3 implicit none

4 integer :: start ! current value of system clock

5 integer :: rate ! system clock counts/sec

6 integer :: finish ! ending value of system clock

7 real i sec ! increment in sec, (finish-start)/rate

8 ! Useage: use tic _toc ! global constant access
9 ! call tic | start clock

10 ! L | use some cpu time

11 ! cputime = toc () ! for increment

12] contains ! access to start, rate, finish, sec

13 subroutine tic

14] !

15] ! Model the matlab tic function, for use with toc

16] !

17 implicit none

18 call system _clock (start, rate) ! Get start value and rate
19 end subroutine tic

20

%% | function toc () result(sec)

23] ! Model the matlab toc function, for use with tic

241 |

25 implicit none

26 real ;1 sec

27 call system _clock (finish) | Stop the execution timer
28 sec = 0.0

29 if (finish >= start) sec = float(finish - start) / float(rate)
30 end function toc

31] end module tic _toc

Figure 4.10 A Module for Computing CPU Times

©2001 J.E. Akin 73

| Action | C++ | F90 |

Bitwise AND & iand
Bitwise exclusive OR A ieor
Bitwise exclusive OR | ior
Circular bit shift ishftc
Clear bit ibclr
Combination of bits mvbits
Extract bit ibits
Logical complement ~ not
Number of bits in integer sizeof bit _size
Set bit ibset
Shift bit left < ishft
Shift bit right > ishft
Test on or off btest
Transfer bits to integer transfer

Table 4.24 Bit Function Intrinsics.

4.4.3 Bit Functions

We have discussed the fact that the digital computer is based on the use of individual bits. The subject of
bit manipulation is one that we do not wish to pursue here. However, advanced applications do sometimes
require these abilities, and the most common uses have been declared in the smitigdigdstandards
USDOD-MIL-STD-1753, and made part of the Fortran90 standard. Several of these features are also a
part of C++. Table 4.24 gives a list of those functions.

4.4.4 Exception Controls

An exception handler is a block of code that is invoked to process specific error conditions. Standard
exception control keywords in a language are usually associated with the allocation of resources, such
as files or memory space, or input/output operations. For many applications we simply want to catch an
unexpected result and output a message so that the programmer can correct the situation. In that case we
may not care if the exception aborts the execution. However, if one is using a commerical execute only
program then it is very distubing to have a code abort. We would at least expect the code to respond to a
fatal error by closing down the program in some gentle fashion that saves what was completed before the
error and maybe even offer us a restart option. Here we provide only the minimum form of an exceptions
module that can be used by other modules to pass warnings of fatal messages to the user. It includes an
integer flag that can be utilized to rank the severity of possible messages. Itis shown in Fig. 4.11. Below
we will summarize the F90 optional error flags that should always be checked and are likely to lead to a
call to the exception handler.

Dynamic Memory: The ALLOCATEandDEALLOCATEstatements both use the optional fBIOAT = to

return an integer flag that can be tested to invoke an exception handler. The integer value is zero after
a successful (de)allocation, and a positive value otherwis8TAIT = is absent, an unsuccessful result
stops execution.

File Open/Close: The OPEN CLOSE andENDFILE statements allow the use of the optional keyword
IOSTAT = to return an integer flag which is zero if the statement executes successfully, and a positive
value otherwise. They also allow the older standard exception key®RR:-= to be assigned a positive
integer constant label number of the statement to which control is passed if an error occurs. An exception
handler could be called by that statement.

File Input/Output: The READ WRITE BACKSPACEand REWINDstatements allow théOSTAT=
keyword to return a negative integer if an end-of-record (EOR) or end-of-file (EOF) is encountered, a
zero if there is no error, and a positive integer if an error occurs (such as reading a character during an

©?2001 J.E. Akin 74

1] module exceptions

2 implicit none

3 integer, parameter :: INFO = 1, WARN = 2, FATAL = 3
4 integer L error _count = 0O

5 integer I max _level =0

(75 contains

8 subroutine exception (program, message, flag)

9 character(len=*) : program

10 character(len=*) I message

1% integer, optional :: flag

1

%le error _count = error _count + 1

15 print *, 'Exception Status Thrown’

16 print *, ’ Program :’, program

17 print *, * Message ', message

18 If (present(flag)) then

19 print *, " Level 7, flag

20 If (flag > max _level) max _level = flag
21 end if ! flag given

%g end subroutine exception

24 subroutine exception _status ()

25 print *

26 print *, "Exception Summary:"

27 print *, " Exception count = ", error _count
28 print *, " Highest level =", max _level
29 end subroutine exception _status

30] end module exceptions

Figure 4.11 A Minimal Exception Handling Module

integer input). They also allow tHERR = error label branching described above for the file open/close
operations.

In addition, theREADstatement also retains the old standard keyviad =to identify a label number
to which control transfers when an end-of-file (EOF) is detected.

Status Inquiry: Whether iNIT mode orFILE mode, thdNQUIRE statement for file operations allows
thelOSTAT = andERR =keywords like th@OPENstatement. In addition, either mode supports two logical
keywords: EXISTS = to determine if theJNIT (or FILE) exists, andDPENED =to determine if a (the)
file is connected to this (an) unit.

Optional Arguments: The PRESENTfunction returns a logical value to indicate whether or not an
optional argument was provided in the invocation of the procedure in which the function appears.

Pointers and Targets: The ASSOCIATEDfunction returns a logical value to indicate whether a pointer
is associated with a specific target, or with any target.

4.5 Interface Prototype

Compiler languages are more efficient than interpreted languages. If the compiler is going to correctly
generate calls to functions, or subprograms, it needs to know certain things about the arguments and
returned values. The number of arguments, their type, their rank, their order, etc. must be the same. This
collection of information is called the “interface” to the function, or subprogram. In most of our example
codes the functions and subprograms have been included in a single file. In practice they are usually
stored in separate external files, and often written by others. Thus, the program that is going to use these
external files must be given a “prototype” description of them. In other words, a segment of prototype,
or interface, code is a definition that is used by the compiler to determine what parameters are required
by the subprogram as it is called by your program. The interface prototype code for any subprogram can
usually be created by simply copying the first few lines of the subprogram (and maybe the last one) and
placing them in an interface directory.

To successfully compile a subprogram modern computer science methods sometimes require the pro-
grammer to specifically declare the interface to be used in invoking a subprogram, even if that subprogram
is included in the same file. This information is called a “prototype” in C and C++, and an “interface”
in F9O. If the subprogram already exists, one can easily create the needed interface details by making

2001 J.E. Akin 75
©

a copy of the program and deleting from the copy all information except that which describes the argu-
ments and subprogram type. If the program does not exist, you write the interface first to define what
will be expected of the subprogram regardless of who writes it. It is considered good programming style
to include explicit interfaces, or prototype code, even if they are not required.

If in doubt about the need for an explicit interface see if the compiler gives an error because it is not
present. In F90 the common reasons for needing an explicit interfac& JaParssing an array that has
only its rank declared. For example(:,:), B(:) . These are known as “assumed-shape” arrays;
Using a function to return a result that is) an array of unknown size, dx) a pointer, orc) a character
string with a dynamically determined length. Advanced features like optional argument lists, user defined
operators, generic subprogram names (to allow differing argument types) also require explicit operators.

In C++ before calling an external function, it must be declared with a prototype of its parameters.
The general form for a function is

function _type function _name (argument _type _list);

where theargument _type _list is the comma separated list of pairs of type and name for each
argument of the function. These names are effectively treated as comments, and may be different from
the names in the calling program, or even omitted. The use of a prototype was shown in Fig. 4.8 and is
used again in Fig. 4.12 which also illustrates passing arguments by reference or by value.

An interface block for external subprograms was not required by F77 (thereby leading to hard to find
errors), but is strongly recommended if F90 and is explicitly required in several situations. The general
form for a F9O interface is

interface interface _name
function _interface _body
subroutine _interface _body
module _procedure _interface _body
end interface interface _name

where a typical functioninterface_body would be

function _type function _name (argument _name_list) result (name)
implicit none
argument _type, intent _class :: name _list

end function function _hame

where the argumentame._list is the comma separated list of names. Of course, the functiqre
refers to the result argument name. These names may be different from the names in the calling program.
A typical subroutine interface_body would be

subroutine subroutine _name (argument _name_list)
implicit none
argument _type, intent _class :: name _list
end subroutine subroutine _name

where the argumentname._list is the comma separated list of names. The topic of a module procedure is
covered elsewhere. The use of a interface block was shown in Fig. 4.8 and used in two new codes, shown
in Fig. 4.12, and the corresponding C++ code in the appendix, which also illustrate passing arguments by
reference (line 23) and by value (line 19) in both F90 and C++. The important, and often confusing, topic
of passing by reference or value was discussed in Sec. 4.2 and is related to other topics to be considered
later, such as the use of “pointers” in C++ and F90, and the “intent” attribute of F90 arguments. Passing
by reference is default in F90 while passing by value is default in C++ .

4.6 Characters and Strings

All of our example languages offer convenient ways to manipulate and compare strings of characters.
The characters are defined by one of the international standards such as ASCII, which is usually used
on UNIX, or the EBCDIC set. These contain both printable and non-printable (control) characters. On

a UNIX system, the full set can be seen with the commaad ascii . In the 256-character ASCII

set, the upper case letters begin at character number 65, ‘A, and the corresponding lower case values are

©2001 J.E. Akin 76

1] program main

2] implicit none

3] ! declare the interface prototypes

4] interface

5 subroutine Change (Refer

6 integer :: Refer; end subroutine Change

7 subroutine No _Change (Value)

8 integer :: Value; end subroutine No _Change

9] end interface

10

1% I illustrate passing by reference and by value in F90

1

13 integer :: Input _Val, Dummy _Val

14

15 print *, "Enter an integer: "

16 read *, Input _Val; print *, "Input value was ", Input _Val
17

18 ! pass by value

19 cal No _Change ((Input _Val)) ! Use but do not change
20 print *, "After No _Change it is ", Input _Val
21

22 ! pass by reference

23 call Change (Input _Val) ! Use and change
24 print *, "After Change it is ", Input _Val

25] end program

26

27 subroutine Change (Refer)

28 ! changes Refer in calling code IF passed by reference

29 integer :: Refer

30 Refer = 100;

31 print *, "Inside Change it is set to ", Refer

g% end subroutine Change

34 subroutine No _Change (Value)

35 ! does not change Value in calling code IF passed by value
36 integer :: Value

37 Value = 100;

38 print *, "Inside No _Change it is set to ", Value
39 end subroutine No _Change

40

41] ! Running gives:

42] | Enter an integer: 12

43] ! Input value was 12

44] ! Inside No _Change it is set to 100

45] | After No _Change it is

46] ! Inside Change it is set to 100

47] | After Change it is 100

Figure 4.12 Passing Arguments by Reference and by Value in F90

32 positions higher (character 97 is ‘a’). These printable characters begin at character 32, as shown in
Table 4.25 for the ASCII standard. The first 33 characters are “non-printing” special control characters.
For exampleNUL = null, EOT= end of transmissiorBEL = bell, BS = backspace, andT = horizontal
tab. To enter a control character, one must simultaneously hold dov@iR&ROkey and hit the letter
that is 64 positions higher in the list. That is, an end of transmiss@nis typed asCONTROL-DThe
codeSP denotes the space character, and we will use the underscbdte fepresent a blank in strings.

We can employ the standard relational operators (e.g., less than) to compare strings and would find

that’ bad <’ dog <’'same =='same. _’,that’ word >’ WORD , and that four <’ oné
<’two while’ 1" <’ 2 <’ 4 . Note that the above equality occurred because trailing blanks are not
considered in relational operatiofmit leading blanks are considerédsameé #' _ _samé. The F90

functionadjustL removes leading blanks and appends them to the right end. Thus, it adjusts the string
to the left, so that sameé ==adjustL (' — _samé). This and other F90 intrinsic character functions
are summarized in Table 4.26.

All blanks are considered when determining the length of a character string. In F90 the intrinsic
functionLEN provides these data so tha&iN(’ samé) =4,LEN(_ _samé) =6, andLEN(same_ _")
= 7. There is another intrinsic functiohEN_TRIM, that provides the string length ignoring trail-
ing blanks. By way of comparisontEN_TRIM(' samé) = 4, LEN_TRIM(" _ _samé) = 6, and
LEN_TRIM(same_ _") = 4. Each character in a string or any internal substrings may be referenced
by the colon operator. Given a character variable we can define a substrisghsay

sub = variable(K:L) for 0 < K,L <= LEN(variable)
= null for K > L

©2001 J.E. Akin 77

0 NUL 1 SOH 2 STX 3 ETX 4 EOT 5 ENQ 6 ACK 7 BEL
8 BS 9 HT 10 NL 11 VT 12 NP 13 CR 14 SO 15 SI

16 DLE 17 DC1 18 DC2 19 DC3 20 DC4 21 NAK 22 SYN 23 ETB
24 CAN 25 EM 26 SUB 27 ESC 28 FS 29 GS 30 RS 31 US

32 SP 33 ! 3 " 3 # 36 $ 37 % 38 & 39

40 (41) 42 * 43 + 44 45 - 46 . 47 |/

48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7
5 8 57 9 58 : 59 60 < 61 = 62 > 63 ?
64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
72 H 73 | 74] 7% K 76 L 7 M 78 N 79 O
80 P 81 Q 82 R 83 S 84 T 8 U 86 V 87 W
8 X 89 Y 9 Z 91 [92 \ 93] 94 ~ 95 _
9% 97 a 98 b 99 c¢ 100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k 108 | 109 m 110 n 111 o
112 p 113 g 114 r 115 s 116 t 117 u 118 v 119 w
120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 DEL

Table 4.25 The ACSII Character Set

ACHAR (1) Character number | in ASCII collating set
ADJUSTL (STRING) Adjust left

ADJUSTR (STRING) Adjust right

CHAR (I) = Character | in processor collating set
IACHAR (C) Position of C in ASCII collating set
ICHAR (C) Position of C in processor collating set
INDEX (STRING, SUBSTRING)?2 Starting position of a substring

LEN (STRING) Length of a character entity

LEN_TRIM (STRING) Length without trailing blanks

LGE (STRING_A, STRING _B) Lexically greater than or equal
LGT (STRING_A, STRING _B) Lexically greater than

LLE (STRING _A, STRING _B) Lexically less than or equal
LLT (STRING _A, STRING _B) Lexically less than

REPEAT (STRING, NCOPIES) Repeated concatenation

SCAN (STRING, SET)? Scan a string for a character in a set
TRIM (STRING) Remove trailing blank characters
VERIFY (STRING, SET) 2 Verify the set of characters in a string
STRING_A//STRING _B Concatenate two strings

a0ptional arguments not shown.

Table 4.26 F90 Character Functions

= error for K or L > LEN(variable).

For example, given the stringhowl’ , then we can definigird = string(2:4) = 'owl’ , andprep
= string(1:3) = ’'how’

The F90 and F77 operator used to concatenate strings into larger strifg8.i€bntinuing the last
example, we see that the concatenativing(1:3)//" _lIstring(2:4)I'?' is'how _owl?’
while the concatenatiosame _ _'//'word’ becomessame _ _word’ and’bad’//’ _'ll'dog’
becomesbad _dog’ . Programs illustrating the reading and concatenating two strings are given in
Fig. 4.13, and in the companion C++ code in the appendix.

Sometimes one needs to type in a non-printing character, such as a tab or a newline. To allow this,
special transmissions have been allowed for, as summarized in Table 4.27.

Remember the ASCII character features: the uppercase letters correspond to numbers 65 through 90
in the list, while the lowercase letters are numbers 97 through 122, so that if we wanted to convert “G” to

©2001 J.E. Akin 78

1] program main

2] ! Compare two strings

3] ! Concatenate two character strings together
4] ! Get the combined length

5 implicit none

6 characterEIen:ZO; :: Stringl, String2

7 character(len=40) :: String3

8 integer ;. length

9

10 print *’Enter first string (20 char max):’
1% read ’(a)’, Stringl I formatted

1

13 print *’Enter second string (20 char max):’
14 read ’(a)’, String2 I formatted

15

16 ! compare

17 if (Stringl == String2) then

18 print *, "They are the same."

19 else

20 print *, "They are different."

21 end if

22

23 ! concatenate

24 String3 = trim (Stringl) // trim (String2)
25

26 Frint *'The combined string is:’, String3
27 ength = len _trim ﬁString3

28 print *'The combined length is:’, length
29

30] end_program main

31] ! Running with "red" and "bird" produces:
32] | Enter first string (20 char max): red

33] ! Enter second string (20 char max): bird
34] | They are different.

35] | The combined string is: redbird

36] ! The combined length is: 7

37] ! Also "the red" and "bird" works

Figure 4.13 Using Two Strings in F90

Action ASCII Character| F90Inpuf | C++ Input
Alert (Bell) 7 Ctrl-G \a
Backspace 8 Ctrl-H \b
Carriage Return 13 Ctrl-M \r
End of Transmission 4 Ctrl-D Ctrl-D
Form Feed 12 Ctrl-L \f
Horizontal Tab 9 Ctrl-I \t
New Line 10 Ctrl-J \n
Vertical Tab 11 Ctrl-K \V

a“Ctrl-" denotes control action. That is, simultaneous pressing of3RNTROkey andthe letter following.

Table 4.27 How to type non-printing characters.

“g” we could use commands such as:

character (len = 1) :: lower_g, UPPER_G
lower_g = achar(lachar('G’) + 32)

or visa versa:
UPPER_G = achar(iachar('g’) - 32)

since they differ by 32 locations. Likewise, since the zero character “0” occurs in position 48 of the
ASCII set we could convert a single digit to the same numerical value with:

integer :: number_5

number_5 = iachar('’5’) - 48

and so forth for all ten digits. To convert a string of digits, sucha823 , to the corresponding number
5623, we could use a looping operation.

©2001 J.E. Akin 79

1] program main

2] ! Convert a character string to an integer in F90
3 implicit none

4 character(len=5) :: Age _Char

5 integer age
6

7

8

print *, "Enter your age: "

read *, Age _Char ! a character string
10 ! convert using an internal file read
11 read (Age _Char, fmt = ’(i5)’) age ! convert to integer
12
13 print *, "Your integer age is ", age
14 print '(" Your binary age is ", b8)’, age
15 print '(" Your hexadecimal age is ", z8)', age
16 print '(" Your octal age is ", 08)', age
17
18] end program main
19] !
20] ! Running gives:
211 | Enter your age: 45
22] ! Your integer age is 45
23] ! Your binary age is 101101
24] ! Your hexadecimal age is 2D
25] ! Your octal age is 55

Figure 4.14 Converting a String to an Integer with F90

character (len = 132) :: digits

integer o d_to_n, power, number
! Now build the number from its digits
if (digits == ' ") then
print *, 'warning, no number found’
number = 0
else
number

=0
= len_trim(digits)
dom =k, 1, -1 ! right to left
d_to_n = iachar(digits(m:m)) - 48
power = 10** k-m%
number = number + d_to_n*power
end do ! over digits
print *, 'number = ', number
However, since loops can be inefficient, it is better to learn that, in F90, an “internal file” can be (and
should be) employed to convert one data type to another. Here we could simply code:

! internal file called convert
write(convert, “(Ag”% digit
read(convert, “(14)”") number

to convert a character to an integer (or real) number. Converting strings to integers is shown in the codes
given in Fig. 4.14 (line 11) and the corresponding C++ appendix routine. Similar procedures would be
used to convert strings to reals. The C++ version (see appendix) uses the intrinsic function “atoi” while
the F90 version uses an internal file for the conversion.

One often finds it useful to change the case of a string of characters. Some languages provide intrinsic
functions for that purpose. In C++ andAviLAB the function to convert a string to all lower case letters
are calledolower andlower , respectively. Here we define a similar F90 function catted lower
which is shown in Fig. 4.15 along with a testing program in Fig. 4.16. Note that the testing program
uses an interface tolower (lines 4-13) assuming that routine was compiled and stored external to the
testing program. Thlower function employs the intrinsic functiondex (line 16) to see if the k-th
character of the input string is an upper case letter. The intrinsic funietioris also used (line 8) to
force thenew_string to be the same length as the original string.

4.7 User Defined Data Types

Variables, as in mathematics, represent some quantity; unlike mathematics, many languages force the
programmer to define whagpethe variable is. Generic kinds of type are integer, floating point (single,

double, and quadruple precision), and complex-valued floating point. Table 4.2 (page 53) presents the
data types inherent in the various languages. Most beginning programmers find the requirement most

©2001 J.E. Akin 80

1] function to _lower (string) result (new _string) ! like C
2] !
3] ! Convert a string or character to lower case
4] ! (valid for ASCIl or EBCDIC processors)
5] !
6 implicit none
7 character (len = *), intent(in) :: string ! unknown length
8 character (len = len(string)) I new _string ! same length
9 character (len = 26), parameter : &
10 UPPER = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', &
11 lower = 'abcdefghijkimnopgrstuvwxyz’
12 integer :: k ! loop counter
13 integer :: loc ! posmon in alphabet
14 new _strln? = string ! copy everything
15 do k =1 en(strlng ! to change letters
16 loc = |ndex UPPER, string(k:k)) ! first upper
17 if (loc /=0) new _string(k:k) = lower(loc:loc) ! convert it
18 end do ! over string characters
19] end function to _lower
Figure 4.15 Converting a String to Lower Case with F90
1] program up _down ! test character case inversion functions
2 implicit none
3 character (len = 24) :: test="ABCDefgh1234abcdZYXWzyxw’
4
5 interface
6 function to _lower (string) result (new _string)
7 character Elen = *), intent(in) :: string
8 character (len = len(string)) : new _string
9 end function to _lower
10 function to _upper (string) result (new _string)
11 character (len = *), intent(in) :: string
12 character (len = len(string)) I new _string
13 end function to _upper
14 end interface
15
16 print *, test
17 print *, to _lower (test)
18 print *, to _upper (test)
19] end program ! running gives
20] ! ABCDefghl234abcdZYXWzyxw
21] | abcdefghl234abcdzyxwzyxw
22] | ABCDEFGH1234ABCDZYXWZYXW

Figure 4.16 Testing String Conversions with F90

languages impose of defining explicitly each variable’s type to be tedious, unnecessary, and a source of
bugs. It's tedious because the programmer must think not only about what the variable represents, but
also how the computations calculate its value, unnecessary because mathematics doesn’t work that way
(the variabler represents a quantity regardless whether it turns out to be an integer or a complex value),
and bug-creating because computations involving different types and assigned to a typed variable can
yield nonmathematical results (for example, dividing the integers 1 with 3 and assigning the results to an
integer yields a zero value).

MATLAB is one language in which variables are not explicitly typed. (Beginning programmers
cheer!) Internally, MATLAB represents numbers in double precision floating point. If a variable’s value
corresponds to an integer,AVILAB will gleefully print it that way, effectively hiding its floating point
representation. A surprise occurs when a calculation accidentality becomes complexasviwill
(silently) change what the variable represents from being real to being complex. For example,gV
will, without complaint, calculate=log(-1) and assign the valu&14159i to x. In many applications,
the expression that yielded the value-af because of an error, andAviLAB will let the error propagate.
(Beginning programmers sigh!) Most, if not all typed languages will immediately announce the evalua-
tion of the logarithm of a negative number, and halt execution. By explicitly defining the kinds of values
a variable will assume helps programming clarity and run-time debugging to some degree.

C++ has four intrinsic (i.e., built-in) types of datainteger, single and double precision reals, and
character-and F90 has the similar set: integer, real, complex, logical, and character. F90 also allows
the user to create a specific precision level for integer and real data. C++ has specified byte sizes for
three character, six integer, one single precision real, and two double precision real data types for a total
of twelve intrinsic data types.

©2001 J.E. Akin 81

C, C++ | Variable.component.sub _component
F90 Variable%component%sub _component

Table 4.28 Referencing Defined Data Type Structure Components.

C, C++ | struct data _tag {

intrinsic _type _1 component _names;

intrinsic _type _2 component _names;
F90 type data _tag

intrinsic _type _1 :: component _names;

intrinsic _type _2 :: component _names;

end type data _tag

Table 4.29 Defining New Types of Data Structure

C, C++ | struct data _tag {
intrinsic _type _1 component _names;
struct tag _2 component _names;
F90 type data _tag
intrinsic _type 1 component _names;
type (tag _2) :: component _names;
end type data _tag

Table 4.3Q Nested Data Structure Definitions.

In addition to intrinsic types, C, C++ and F90 allow the formation of new types of
data—structures—that are collections of values of not necessarily the same type. These procedures
are namedtruct ortype in C and F90, respectively.

To go along with this freedom, F90 allows you to define new operations to act on the derived types.
While C++ retains thestruct keyword, it is viewed as alasswith only public data members and no
functions. In other words, in C+¢lassis a generalization otruct and, thusclassis the preferred
keyword to use. As an example of a task made easier by derived data, consider creating parts of a data
structure to be used in an address book. We will need a variable that can have components and sub-
components. They are referenced by a special syntax and defined as illustrated in Tables 4.28 and 4.29.
This procedure for defining a new type of data structure can be “nested” by referring to other derived
type entities defined earlier in the program. These concepts are shown in Table 4.30. One should declare
the data type of all variables used in a program module. This is also true for user defined data structures.
Table 4.31 outlines the forms of these statements, how structures are initialized, and how component
values are assigned.

There are times when either the derived type variable or its components, or both, could be subscripted
objects (i.e., arrays). Then care must be taken in the interpretation of which variable or component is
being addressed. Table 4.32 illustrates the typical combinations with the F90 syntax.

As a concrete example, considegtene _type andaddress _type definition.

©2001 J.E. Akin 82

C, C++ | struct data _tag variable _list; /* Definition */ o
struct data _tag variable = {component _values }; /* Initialization */
variable.component.sub _component = value; /* Assignment */

F90 type (data _tag) :: variable _list | Definition
variable = data _tag (component _values) ! Initialization
variable%component%sub _component = value ! Assignment

Table 4.31 Declaring, initializing, and assigning components of user-defined datatypes.

INTEGER, PARAMETER :: j_max = 6
TYPE meaning _demo
INTEGER, PARAMETER :: k_max = 9, word = 15
CHARACTER (LEN = word) :: name(k _max)
END TYPE meaning_demo

TYPE (meaning _demo) derived(j _max)
Construct Interpretation
derived All components of alberived 's elements
derived(j) All components oft" element oflerived
derived(j)%name All k _max components ofiame within j*" element ofderived
derived%name(k) Componenk of thename array for all elements aferived
derived(j)%name(k) Componenk of thename array ofjt" element ofderived

Table 4.32 F90 Derived Type Component Interpretation.

F90 C++
type phone _type struct phone _type {
integer :: area _code, number, extension int area _code, number, extension;
end type phone _type ;
type address _type struct address _type {
integer :: number) int number;
character Elen = 35g ;o street, city char street[35], city[35];
character (len = 2) : state char state[2];
integer :: zip _code int zip _code;

end type address _type

These could be used to define part gleason _type

F90 C++
type person _type struct person _type {
character (len = 50) :: name char name[50];
type (phone _type) :: phone struct phone _type phone;
type (address _type) :: address struct address _type address;
integer :: born _year int born _year;
end type person _type IS

We define two people with

F90 C++

type (person _type) :: sammy, barney struct person _type sammy, barney;

or build an address book array filled with the above data structures by defining

©2001 J.E. Akin 83

F90

integer, parameter :: number = 99
type (person _type), dimension (number) :: address _book

C++

#define NUMBER 99
struct person _type address _book[NUMBER];

and then initialize, or “construct” sammy'’s phone and zip code as

F90 C++
sammy%phone = phone_ type (713 5278100, 0) sammy.phone = {713 5278100, 0 };
sammy%?zip_code = 7700518 sammy.zip _code = 770051892;

and print them with
F90 C++
print %, sammy%phone printf("(%d)%d, extension %d",
print %, sammy%address%zip _code sammy.area _code,

sammy.number,
_sammy.extension);
printf("%d", sammy.zip _code);

and then define specific members for barney with the “constructor”

F90 C++
barney = person _type(Barn Owl", barney = {"Barn Owl", {0,0,0 },
phone _type(0,0,0), & sammy.address, 1892,
sammy%address 1892, "Sammy’s cousin") "Sammy’s cousin" };

Note the difference in the defined type constructors. Two are actually used here because the second com-
ponent must be defined apbone _type . C++ just uses brackets to enclose the supplied components

of each user defined type. F90 has an intrinsic functon that is created automatically by the type definition
and it accepts all of the components required by the type. That is why the function name “pyyoeie
appears in the intrinsic constructor routine “perstype”. Finally, put them in the book.

F90 C++
address _book(1) = sammy address _book[1] = sammy;
address _book(2) = barney address _book[2] = barney;

Fig. 4.17 presents a sample code for utilizing user defined structure types using F90 (there is a C++
version in the appendix). First a “person” structure is created (lines 4-7) by using only the intrinsic
types of integers and characters. It then is used in turn within an additional data structure (line 10). The
components of the structures are read (lines 18, 21, 24) and output (lines 26,27). For more general data,
suggested in the comments, formatted input/output controls would be necessary.

4.7.1 Overloading Operators

As a complete short example of utilizing many of the new programming features that come with user
defined data structures we will consider the use of a familiar old mathematics system, fractions. Recall
that a fraction is the ratio of two integers. We will therefore define a new data type Eafletion. It

©2001 J.E. Akin 84

1] program main ()
2] ! Define structures and components, via F90
3 implicit none
4 type Person ! define a person structure type
5 character (len=20) :: Name
6 integer © Age
; end type Person
9 type Who _Where ! use person type in a new structure
10 type (Person) i Guest
11 character (len=40) :: Address
12 end type Who _Where
13
14 I Fill a record of the Who _Where type components
%g type (Who _Where) Record;
17 print *"Enter your name: "
18 read *, Record % Guest % Name
1
20 print *"Enter your city: "
%% read * Record % Address
23 print *"enter your age: "
24 read *, Record % Guest % Age
25
26 print *,"Hello ", Record % Guest % Age, " year old ", &
27 Record % Guest % Name, " in ", Record % Address
28
29] end program main
30
31] ! Running with input: Sammy, Houston, 104 gives
%% I Hello 104 year old Sammy in Houston
!
34] ! But try: Sammy Owl, Houston, 104 for a bug

Figure 4.17. Using Multiple Structures in F90

will simply consist of two integer types, namedmanddenom respectively. New data types can be
defined in any program unit. For maximum usefulness we will place the definition in a module named
Fractions To use this new data type we will want to have subprograms to define a fraction, list its
components, and multiply two fractions together, and to equate one fraction to another. In addition to
the intrinsic constructor functioinaction ~ we will create a manual constructor function caléadign

and it will have two arguments, the numerator value, and denominator value, and will use them to return
a fraction type. The listing subroutine, callist _Fraction , simply needs the name of the fraction

to be printed. The functiomult _Fraction , accepts two fraction names, and returns the third fraction

as their product. Finally, we provide a function that equates the components of one fraction to those in a
new fraction.

This data structure is presented in Fig. 4.18. There we note that the module starts with the definition
of the new data type (lines 2-4), and is followed with the “contains” statement (line 12). The subpro-
grams that provide the functionality of the fraction data type follow the “contains” statement and are thus
coupled to the definition of the new type. When we have completed defining the functionality to go with
the new data type we end the module.

In this example the program to invoke the fraction type follows in Fig. 4.19. To access the module,
which defines the new data type and its supporting functions, we simply employ a “use” statement at the
beginning of the program (line 2). The program declares thregtion type variables (line 3)z, y,
andz. The variabler is defined to be 22/7 with the intrinsic type constructor (line 5), while assigned
a value of 1/3 by using the functiassign (line 7). Both values are listed for confirmation. Then we
form the new fractionz = 22/21, by invoking themult _Fraction function (line 9),

z = mult _Fraction (x, y)

which returns: as its result. A natural tendency at this point would be to simply write this-ase * y.
However, before we could do that we would have to tell the operators, “*” and "=", how to act when
provided with this new data type. This is knownmagrloadingan intrinsic operator. We had the foresight

to do this when we set up the module by declaring which of the “module procedure”s were equivalent
to each operator symbol. Thus from the “interface operator (*)” statement block the system now knows
that the left and right operands of the “*” symbol correspond to the first and second arguments in the

©2001 J.E. Akin 85

1] module Fractions ! F90 "Fraction" data structure and functionality
2 implicit none

3 type Fraction | define a data structure

4 integer :: num, den ! with two "components"

5 end type Fraction

6

7 interface operator (*) ! extend meaning to fraction

g module procedure mult _Fraction ; end interface

10 interface assignment (=) ! extend meaning to fraction

11 module procedure equal _Fraction ; end interface

12

13] contains ! functionality i

14 subroutine assign (name, numerator, denominator)

15 type (Fraction), Intent(inout) :: name _

16 integer, intent(in) :» numerator, denominator

17

18 name % num = numerator ! % denotes which "component"
19 if (denominator == 0) then

20 print *, "0 denominator not allowed, set to 1"

21 name % den = 1

22 else; name % den = denominator

%i end if ; end subroutine assign

25 subroutine list(name))

%6 type (Fraction), intent(in) :: name

7

28 print *, name % num, “/', name % den ; end subroutine list
29

30 function mult __Fraction (a, b) result (c)

31 type (Fraction), intent(in) :: a, b

32 type (Fraction) it C

33

34 c%num = a%num * b%num ! standard = and * here

35 c%den = a%den * b%den ; end function mult _Fraction
36

37 subroutine equal ~ _Fraction (new, name)

38 type gFract!ong, !ntentg_out) onew

38 type (Fraction), intent(in) :: name

4

41 new % num = name % num ! standard = here

42 new % den = name % den ; end subroutine equal _Fraction
43] end module Fractions

Figure 4.18 Overloading operations for new data types

functionmult _Fraction . Likewise, the left and right operands of “=" are coupled to the first and
second arguments, respectively, of subroutineal _Fraction . The testingmain and verification
results are in Fig. 4.19 Before moving on note that the system does not yet know how to multiply a
integer times a fraction, or visa versa. To do that one would have to add more functionality, such as
a function, sayint _mult _frac , and add it to the "module procedure” list associated with the “*”
operator.

When considering which operators to overload for a newly defined data type one should consider
those that are used #orting operations, such as the greater-thapand less-thark:, operators. They
are often useful because of the need to sort various types of data. If those symbols have been correctly
overloaded then a generic sorting routine might be used, or require few changes.

4.7.2 User Defined Operators

In addition to the many intrinsic operators and functions we have seen so far, the F90 user can also define
new operators or extend existing ones. User defined operators can employ intrinsic data types and/or user
defined data types. The user defined operators, or extensions, can be unary or binary (i.e., have one or
two arguments). The operator symbol must be included between two periods, sugh ds Specific
examples will be given in the next chapter.

4.8 Pointers and Targets

The beginning of every data item must be stored in computer memory at a specific address. The address
of that data item is called pointerto the data item, and a variable that can hold such an address is called
apointer variable Often it is convenient to have a pointer to a variable, an array, or a sub-array. F90,
C++ and MATLAB provide this sophisticated feature. The major benefits of the use of pointers is that

©2001 J.E. Akin 86

1] program main

2 use Fractions

3 implicit none

4 type (Fraction) :: X, y, z

5

6 x = Fraction (22,7) ! default constructor)

7 write (*,'("default ~x = "), advance='no’) ; call list(x)

8 call assign(y,1,3) ! 'manual constructor)

9 write (*,'("assigned y = "), advance='no’) ; call list(y)

10 z = mult _Fraction (x,y) ! function use

11 write (*("x mult y = "), advance='no’) ; call list(z);

12 print *, “Trying overloaded * and = for fractions:"

13 write (*("y * x gives "), advance='no’) ; call list(y*x) ! multi

14 z = x*] ! new operator uses

15 write (*("z = x*y gives ")’, advance='no’) ; call list(z) ! add

16] end program main ! Running gives:
17] ! default x = 22/7 | assigned y = 1/3 I'x mult y = 22/21
18] ! Trying overloaded * and = for fractions:

19] !y * x gives 22/21 Iz = x*y gives 22/21

Figure 4.19 Testing overloading for new data types

| | C++ | F90
Declaration| type _tag *pointer _name; type (type _tag), pointer :
pointer _name
Target &target _name type (type _tag), target : target _name
Examples | char *cp, c; character, pointer :: cp
int *ip, i integer, pointer :: ip
float *fp, f; real, pointer :: fp
cp = & ¢ cp => ¢
i#) =& i ip=>i
p=&f p=>f

Table 4.33 Definition of pointers and accessing their targets.

they allow dynamic data structures, such as “linked lists” and “tree structures,” and they allow recursive
algorithms. Note that rather than containing data themselves, pointer variables simply exist to point
to where some data are stored. Unlike C andrhMhAB the F90 pointers are more like the “reference
variables” of the C++ language in that they are mainly an alias or synonym for another variable, or part
of another variable. They do not allow one to easily get the literal address in memory as does C. This is
why programmers that write computer operating systems usually prefer C over F90. But F90 pointers
allow easy access to array partitions for computational efficiency, which C++ does not. Pointers are often
used to pass arguments by reference.

The item to which a pointer points is known asaaget variable. Thus, every pointer has a logical
status associated with it which indicates whether or not it is currently pointing to a target. The initial
value of the association ifalse. , or undefined.

4.8.1 Pointer Type Declaration

For every type of data object that can be declared in the language, including derived types, a correspond-
ing type of pointer and target can be declared (Table 4.33).

While the use of pointers gives programmers more options for constructing algorithms, they also have
a potential severely detrimental effect on the program execution efficiency. To ensure that compilers can
produce code that execute efficiently, F90 restricts the variables, to which a pointer can point, to those
specifically declared to have the attribueget . This, in part, makes the use of pointers in F90 and
C++ somewhat different. Another major difference is that C++ allows arithmetic to be performed on the
pointer address, but F90 does not.

So far, we have seen that F90 requires specific declarationsaifitar and an potentiahrget
However, C++ employs two unary operatogsand*, to deal with pointers and targets, respectively.
Thus, in C++ the operat@&variable _name means “the address of/ariable _name, and the C++
operatorpointer _name means “the value at the address pfinter _name.

©2001 J.E. Akin 87

C, C++ | pointer _name = NULL

F90 nullify (list _of _pointer _names)
F95 pointer _name = NULL()

Table 4.34 Nullifying a pointer to break target association.

1 program pt _expression

2 !

3 ! F90 example of using pointers in expressions

4 implicit none

5 integer, POINTER :: p, q, r

6 integer, TARGET @i =1,j=2 k=3

7

8 q =>j ! g points to integer |

9 p =>1 ! p points to integer |

10 !

11 ! An expression that "looks like" pointer arithmetic

%g : automatically substitutes the target value:

14 ' g=p+2 ~ ! means: j=i+2=1+2=3
15 print *, i, j, kK ! print target values

16 p =>k ! p now points to k

17 print *, (g-p) ! means print j -k=3-3=0
18 !

19 ! Check associations of pointers

20 print *, associated (r) | false

21 r =k)] I now r points to k, also
22 print *, associated (p,i) ! false

23 print *, associated (p,k) ! true

24 print *, associated (r,k) ! true

25 end program pt _expression

Figure 4.20 Using F90 Pointers in Expressions.

4.8.2 Pointer Assignment

F90 requires that a pointer be associated with a target by a single pointer assignment statement.
C allows, but does not require, a similar statement. (See Table 4.33). After such a statement,
the pointer has a new association status and one could employ the F9O0 intrinsic inquiry function
associated(pointer _name, target _name) to return.true. as the logical return value. If one
wishes to break or nullify a pointer’s association with a target, but not assign it another target, one can
nullify the pointer as shown in Table 4.34.

4.8.3 Using Pointers in Expressions

The most important rule about using pointers in F90 expressions is that, where ever a pointer occurs,
it is treated as its associated target. That is, the target is automatically substituted for the pointer when
the pointer occurs in an expression. For example, consider the actions in Fig. 4.20 (where the results are
stated as comments).

4.8.4 Pointers and Linked Lists

Pointers are the simplest available mechanism for dynamic memory management of arrays such as stacks,
queues, trees, and linked lists. These are extraordinarily flexible data structures because their size can
grow or shrink during the execution of a program. For linked lists the basic technique is to create a
derived type that consists of one or more data elements and at least one pointer. Memory is allocated to
contain the data and a pointer is set to reference the next occurrence of data. If one pointer is present, the
list is a singly-linked list and can only be traversed in one direction: head to tail, or vice versa. If two
pointers are present: the list is a doubly-linked list and can be traversed in either direction. Linked lists
allow the data of interest to be scattered all over memory and uses pointers to weave through memory,
gathering data as required. Detailed examples of the use of linked lists are covered in Chapter 8.

As a conceptual example of when one might need to use linked-lists think of applications where
one never knows in advance how many data entries will be needed. For example, when a surveyor
determines the exact perimeter of a building or plot of land, critical measurements are taken at each

©2001 J.E. Akin 88

angle. If the perimeter ha¥ sides, the surveyor measures the length of each side and the interior angle
each side forms with the next. Often the perimeter has visual obstructions and offsets around them must
be made, recorded, and corrected for later. Regardless of how careful the surveyoris, errors are invariably
introduced during the measurement process. However, the error in angle measurements can be bounded.

The program for implementing the recording and correcting of the angles in a survey could be written
using a singly linked list. A linked list is chosen because the programmer has no idea how many sides
the perimeter has, and linked lists can grow arbitrarily. Because of the linked list’s ability to absorb a
short or long data stream, the user does not have to be asked to count the number of legs in the traverse.
The program begins by declaring a derived type that contains one angle measurement and a pointer to
the next measurement. A count is kept of the number of legs in this loop and the forward pointer for the
last angle read is cleared (set to null) to signal the end of list. After all the data are read, the entire list of
angles is reviewed to get the total of the measurements. This starts by revisiting the head of the list and
adding together all the angle measurements until a null pointer is encountered, signaling the end of list.
Then the error can be computed and distributed equally among the legs of the traverse.

4.9 Accessing External Source Files and Functions

Attimes one finds it necessary, or efficient to utilize other software from libraries, other users, or different
paths in your directories. Of course, you could always use the brute force approach and use a text editor
to copy the desired source code into your program. However, this is unwise not only because it wastes
storage, but more importantly gives multiple copies of a module that must all be found and changed if
future revisions are needed or desired. Better methods of accessing such codes can be defined either
inside your program, or external to it in the “linking” phase after compiling has been completed.

High level languages like C, C++, and F90 allow one or more approaches for accessing such soft-
ware from within your code. One feature common to all these languages is the availability of an “include”
statement which gives the system path to the desired code file. At compile time, and only then, a tem-
porary copy of the indicated code from that file is literally copied and inserted into your program at the
location of the corresponding “include” statement.

It is common practice, but not required, to denote such code fragments with nhame extensions of “.h”
and ".inc”, in C++ and F90, respectively. For example, to use a program called “df&sson” one
could insert the following statement in your program:

C, C++: include <class —Person.h>
F90 . include ’class _Person.inc’

if the files, class Person.h or classPerson.inc, were in the same directory as your program. Otherwise,
it is necessary to give the complete system path to the file, such as,

include ‘/home/caam211/Include/inv.fo0’
include ‘/home/caam211/Include/SolveVector.f90’

which give source links to theaam211 course files for the functiomv(A) for returning the inverse
of a matrixA, and the functiorsolveVector(A,B) which returns the solution vectarfor the matrix
SystemA*X = B.

In F90 one can also provide a “module” that defines constants, user defined types, supporting sub-
programs, operators, etc. Any of those features can be accessed by first including such a F90 module
before the main program and later invoking it with a “use” statement which cites the “module” name. For
example, the F90 program segments:

include ‘/home/caam?211/Include/caam211 _operators.fo0’
Program Lab2 _A_2
call test _matrix (A, B, X) ! form and invert test matrix
subroutine test _matrix (A, B, X))
use caam211 _operators ! included above
implicit none
real 1 A(,:), B(), X()
real :: A _inv(size(A,1),size(A,1)) ! automatic array allocation
A_inv = inv(A)
X = A .solve. B I'like X = A \ B in Matlab

©?2001 J.E. Akin 89

gives a source link to theaam211 course “module” source file name@dam211 _operators.fo0
which contains subprograms, such as the fundtiof) , and operator definitions likeolve. which
is equivalent to the\"” operator in MATLAB.

In the last example the omission of the “include” statement would require a compiler dependent state-
ment to allow the system to locate the module cited in the “use” statement. For the National Algorithms
Group (NAG) F90 compiler that link would be given as

f90 -0 go /home/caam211/Include/caam211 _operators.f90 my.f90

if the above segment was stored in the file namagd90 , while for the Cray F90 compiler a path flag,
-p , to the compiled version is required, such as:

f90 -0 go -p /home/caam21l/Include/caam211 _op _CRAY.o my.fo0

Either would produce an executable file, named “go” in this example.

4.10 Procedural Applications

In this section we will consider two common examples of procedural algorithms: fitting curves to exper-
imental data, and sorting numbers, strings, and derived types. Sorting concepts will be discussed again
in Chapter 7.

4.10.1 Fitting Curves to Data

We must ofter deal with measurements and what they result in: data. Measurements are never exact
because they are limited by instrument sensitivity and are contaminated by noise. To determine trends
(how measurements are related to each other), confirm theoretical predictions, and the like, engineers
must frequentlhyfit functions to data. The “curve” fit is intended to be smoother than a raw plot of the
data, hopefully revealing more about the underlying relation between the variables than would otherwise
be apparent.

Often, these functions takgarametricform: The functional form is specified, but has unknown
coefficients. Suppose you want to fit a straight line to a dataset. y\dnoting the measurement and
x the independent variable, we wish to fit the functipr= f(z) = ma + b to the data. The fitting
process amounts to determining a few quantities of the assumed linear functional floerparameters
m andb—from the data. You know that two points define a straight line; consequently, only two of the
(z,y) pairs need be used. But which two should be used? In virtually all real-world circumstances, the
measurements dwt precisely conform to the assumed functional form. Thus, fitting a curve by selecting
a few values (two in the linear case) and solving for the function’s parameters produces a circumspect
“fit", to say the least. Instead, the most common approach is toalighe data in the curve fitting
process. Because you frequently have much more data than parameters, you have what is known as an
over-determinegroblem. In most cases, no parameter values produce a function that will fit all the
data exactly. Over-determined problems can be solved by specifyiagarcriterion (what is an error
and how large is the deviation of data from the assumed curve) and finding the set of parameter values
that minimizes the error criterion. With this approach, we can justifiably claim to have found the best
parameter choices.

The “Least Squares” Approach

Far and away the most common error criterion is thean-squared error Given measurement pairs

(z;,v:),i =1,..., N, the mean squared errer equals the average across the dataséy,o# f(a:i))2,
the squared error between t#e measurement and the assumed parametric fungtioy).

. 1 N 2
e = ~ ;(yz — f(z:))

Least squares fitting of functions to data amounts to minimizing the dataset’s mean squared error with
respect to the parameters.

©2001 J.E. Akin 90

Toillustrate the least-squares approach, let’s fit a linear function to a dataset. Substituting the assumed
functional formf(z) = mz + b into the expression for the mean-squared error, we have

N
. 1 2
2
€ =% E_l (yi — (max; + b))
We can find a set of equations for the parameterandb that minimize this quantity by evaluating the
derivative ofe? with respect to each parameter and setting each to zero.

e _ 1 }N:—z (yi — (ma; + b)) =0
dm N po TilYi — M N
de? 1 &

1

-
I

After some simplification, we find that we have tligear equations to solve for the fitting parameters.
1 & 1 & 1 &
i=1 i=1 i=1
1 & 1 &
= X b —_)

Thus, finding the least-squares fit of a straight line to a set of data amounts to solving a set of two linear
equations, the coefficients of which are computed from the data. Note that the four summations in the
last equation have the same range count (N) and could be evaluated in a single explicit loop.

An Aside
Because fitting data with a linear equation yields a set of two easily solved equations for the parameters,
one approach to fittingonlinearcurves to data is to convert the nonlinear problem into a linear one. For
example, suppose we want to fipawer lawto the data:f(z) = ax®. Instead of minimizing the mean
squared error directly, we transform the data so that we are fitting it with a linear curve. In the power
law case, the logarithm of the fitting curve is linear in the parametegsf(z) = loga + blogz. This
equation is not linear in the parameterFor purposes of least-squares fits, we instead t'eat loga

as the linear fit parameter, solve the resulting set of linear equation$, fand calculate = expa’ to
determine the power law fitting parameter. By evaluating the logarithepafidy; and applying the least
squares equations governing the fitting of a linear curve to data, we can fit a power-law function to data.
Thus, calculating a linear least squares fit to data underlies general approximation of measurements by
smooth curvesFor an insight to the types of relationships that can be determined, see the following
summary.

| zaxis | y-axis | | Relationship |
Linear Linear y=mx+b linear
Linear Logarithmic | logy = mz + b exponentialy = e - e™*
Logarithmic| Linear y=mlogz +b logarithmic
Logarithmic | Logarithmic| logy = mlogz + b | power-law:y = e - 2™

We can now specify the computations required by the least squares fitting algorithm mathematically.
Algorithm: Least-Squares Fitting of Straight Lines to Data

1. Given N pairs of data pointéz;, y;)

2. Calculatet a1 = % Zzlil 1'12, a1z = % Zzlil Ti, Q1 = % Zzlil Ti, axs = 1, ¢ =

1 N 1 N
~ Ei:1 x;y;, andey = N Zi:1 Yi-
tNote that these calculations can be performed in one loop rather than four.

©2001 J.E. Akin 91

3. Solve the set of linear equations

air a2
a1 a2

m _ C1
b o C2
which for two equations can be done by hand to yield

m = (012 s C2 —N'C1)/(a12 - a21 —N~a11)

b = (02 —m ~a12)/N

. N 2
4. Calculate the mean squared errore? = & 3°.° | (y; — (ma; + b)) .

Implementing the Least Squares Algorithm

In FOO, such calculations can be performed two different ways: one expresses the looping construct
directly, the other uses more efficient intrinsic array routines inside F90. Assumifig;thare stored in
the vectolx, the coefficienal2 can be calculated (at least) two ways.

1. sum_x = 0
N = size(x)
doi = 1N
sum_x = sum_x + Xx(i)
end do
al2 = sum_x/N

2. al2 = sum(x)/size(x)

Clearly, the second method produces a somewhat simpler expression than the first, and is vastly superior
to the first. In the sample code that follows in Fig. 4.21 we use the intrinsic array functions but encourage
the reader to check the results with a single loop that computes all six terms needn@fidd.

There are a few new features demonstrated in this example code. In line 6 we have specified a fixed
unit number to associate with the data file to be specified by the user. But we did not do an INQUIRE to
see if that unit was already in use. We will accept a user input filename (lines 8, 25 and 28) that contains
the data to be fitted. An interface (lines 12-21) is provided to external routines that will determine the
number of lines of data in the file and the read those data into the two arrays. Those two routines are given
elsewhere. Of course, the memory for the data arrays must be dynamically allocated (line 35) before they
can be read (line 37). After the least squares fit is computed (line 40) and printed the memory space for
the data is freed (line 44).

Inthelsq _fit subroutine (line 47) the three items of interest are passed in thefarrayRoutine
Isqg _fit could have been written as a function, try it.) Observe yhatust be the same length as array
x so thesize intrinsic was used to ensure that (line 56). The data summations are evaluated witi the
intrinsic (lines 62-64) and it is used again to evaluate the mean squarednser@ine 72) as described
in step 4 of the algorithm. The test data (lines 78-89) and results (lines 92-96) are given as comments as
usual. Since no explicit loops have been used this form would be more efficient on vector computers and
some parallel computers.

4.10.2 Sorting

One of the most useful computational routines is sorting: Ordering a sequence of data according to some
rule. For example, the alphabetized list of filenames producted by a system directory command is far
easier to read than an unsorted list would be. Furthermore, data can be fruitfully sorted in more than one
way. As an example, you can sort system files by their creation date.

Sorting algorithms have been well studied by computer scientists in a quest to find the most efficient.
We use here thbubble sort algorithmperhaps the oldest, but not most efficient. This algorithm makes
multiple passes over a list, going down the list interchanging adjacent elements in the list if needed to
put them in order. For example, consider thelliste, a, d, f, c] , shown in Fig. 4.22, that we

©2001 J.E. Akin 92

1] program linear _fit

2] !

3] ! F90 linear least-squares fit on data in file

4] ! specified by the user.

5] !

6] implicit none

7] integer, parameter ;. filenumber = 1 ! RISKY
8] real, allocatable :: xw, y() | data arrays

9] character (len = 64) : filenam I name of file to read
10] integer 0 lines I number of input lines
1% real o fit(3) ! final results

1

13] interface

14 function inputCount(unit) result(linesOflnput)

15 integer, intent(in) :: unit ! file' unit number
16 integer :: linesOfinput ! result

17 end function inputCount

18 subroutine readData (inFile, lines, X, y)

19 integer, intent(in) :: inFile, lines I file unit, size
20 real, intent(out) :: x(lines), y(lines) ! data read
21 end subroutine readData

22] end interface

23

24] | Get the name of the file containing the data.

25 write (*,*) 'Enter the filename to read data from:’

%6 read (*,'(A64)’) filename

7

28] ! Open that file for reading.

29 open (unit = filenumber, file = filename)

30

31] ! Find the number of lines in the file

32 lines = inputCount (filenumber)

%3 write (*,*) 'There were ’lines,” records read.’

4

35] ! Allocate that many entries in the x and y array

36 allocate (x(lines), y(lines))

37

38 call readData (filenumber, lines, X, y) | Read data
39 close (filenumber)

40

41 call Isg _fit (x, y, fit) I least-squares fit
42 print *, "the slope is ", fit(1) ! display the results
43 print *, “the intercept is ", fit(2

44 print *, "the error is " fit(3)

45 deallocate (y, x)

46] contains

47

Fig. 4.21, A Typical Least Squares Linear Fit Program (continued)

wish to sort to alphabetical order. In the first pass, the algorithm begins by examining the first two list
elementgb, e) . Since they are in order, these two are left alone. The next two elerfeents

are not in order; these two elements of the list are interchanged. In this way, we “bubble” the eédlement
toward the top and toward the bottom. The algorithm proceeds through the list, interchanging elements

if need be until the last element is reached. Note that the bottom of the list at the end of the first pass
contains the correct entry. This effect occurs because of the algorithm’s structure: The “greatest” element
will always propagate to the list's end. Once through the pass, we see that the list is in better, but not
perfect, order. We must perform another pass just like the first to improve the ordering. Thus, the second
pass need consider only the first- 1 elements, the third — 2, etc. The second pass does make the

list better formed. After more passes, the list eventually becomes sorted. To produce a completely sorted
list, the bubble-sort algorithm requires no more passes than the number of elements in the list minus one.

The following F90 routines illustrate some of the initial features of a simple procedural approach
to a simple process like the bubble-sort algorithm. We begin by considering the sorting of a list of real
numbers as shown in subroutine SoReals in Fig. 4.22.

In line 1 we have passed in the size of the array, and the actual array (called database). Note that the
database has intent (inout) because we plan to overwrite the original database with the newly sorted order,
which is done in lines 18-20. For efficiency sake we have included an integer counter, $aqbes,
so that we can determine if the sort has terminated early. If we wished to apply the same bubble-sort
algorithm to an integer array all we would have to do is change the procedure name and lines 6 and 10
that describe the type of data being sorted (try it).

©2001 J.E. Akin 93

48 subroutine Isq _fit (x, y, fit)

49] !

50] ! Linear least-squares fit, A u = ¢

51] !

52] | fit = slope, intercept, and mean squared error of fit.
53] ! lines = the length of the arrays x and vy.

54] ! x = array containing the independent variable.

55] ! vy = array containing the dependent variable data.
56 implicit none

57 real, intent(in) " x() y(size(x))

58 real, intent(out) : ()

59 integer 0 lines

60 real Tom, b, mse

g% real Isumx, sumx2, sumy, sumxy
63] ! Summatlons

64 sumx = sum (X ; sumx2 = sum (X**2)
gg sumy = sum (Y ; sumxy = sum (X*y)
67] ! Calculate slope intercept

68 lines = size(x)

69 m = (sumx*sumy - lines*sumxy)/(sumx**2 - lines*sumx2)
70 b = (sumy - m*sumx)/lines

71

72] ! Predicted y points and the sum of squared errors.
73 mse = sum ((y - m*x - b)**2)lines

74 fit(l) = m ; fit(2) ; fit(3) = mse ! returned
75 end subroutine Isq _fit

76

77 end program linear _fit

78

79] ! Given test set 1 in file Isq _1l.dat:

80] ! -5.000000 -2.004481

81] ! -4.000000 -1.817331

82] ! -3.000000 -1.376481

83] ! -2.000000 -0.508725

84] ! -1.000000 -0.138670

85] ! 0.000000 0.376678

86] ! 1.000000 0.825759

87] ! 2.000000 1.036343

88] ! 3.000000 1.815817

89] ! 4.000000 2.442354

90] ! 5.000000 2.636355

91] ! Running the program yields:

92] !

93] ! Enter the filename to read data from: Isq _1.dat
94] | There were 11 records read.

95] ! the slope is 0.4897670746

96] ! the intercept is 0.2988743484

97] ! the error is 0.2139159478E-01

Figure 4.21 A Typical Least Squares Linear Fit Program

That is true because the compiler knows how to apply-theperator to all the standard numerical
types in the language. But what if we want to sort character strings, or other types of objects? Fortran has
lexical operators (like LGE) to deal with strings, but user defined objects would require that we overload
the > operator, if the expected users would not find the overloading to be confusing. In other words, you
could develop a fairly general sort routine if we changed lines 6 and 10 to be

6 type (Object), intent(inout) :: database (lines)
[10] type SObjec; L temp
and provided an overloading of so that line 17 makes sense for the defined Object (or for selected
component of it).

To illustrate the sort of change that is necessary to sort character strings consider subroutine
Sort_ String Fig. 4.23:

To keep the same style as the previous algorithm and overloadaperator we would have to have a
procedure that utilizes the lexical operators in lines 24 and 25, along with the interface definition on lines
12 through 17, do define the meaningein the context of a string. While the concept of a “template”
for a code to carry out a bubble-sort on any list of objects it may not always be obviousswhatns
when it is overloaded by you or some other programmer.

Note that in the two above sorting examples we have assumed that we had the authority to change the
original database, and that it was efficient to do so. Often that is not the case. Imagine the case where
the database represents millions of credit card users, each with a large number components of numbers,

©2001 J.E. Akin 94

@

l
9{3
A
(O
o
o

-~ 0O DO QDT

Pass 2

D> 3@—>§ b b
d d
e

d —>d —>d
e e —>e c
C C C CZ)XE
f f f f f

Figure 4.22 Example passes of the bubble-sort algorithm through data.

1] subroutine Sort _Reals (lines, database)

2] ! Bubble Sort of (changed) Real Database

3

4 implicit none

5 integer, intent(in) 0 lines ! number of records

g real, intent(inout) :: database (lines) ! records in database

8 integer :: swaps _Made ! number of swaps made in one pass
9 integer :: count ! loop variable

10 real ;1 temp ! temporary holder for making swap
11

12 do ! Repeat this loop forever... (until we break out of it)

13 swaps _Made = 0 ! Initially, we’'ve made no swaps
14 ! Make one pass of the bubble sort algorithm

15 do count = 1, (lines - 1)

16 | If item is greater than the one after it, swap them

17 if (database (count) > database (count + 1)) then

18 temp = database (count)

19 database (count) = database (count + 1)

20 database (count + 1) = temp

21 swaps _Made = swaps _Made + 1
22 end if

23 end do

24 ! If we made no swaps, break out of the loop.

25 if (swaps _Made == 0) exit ! do count swaps

26 end do

27] end subroutine Sort _Reals

Figure 4.23 Bubble Sort of a Real Array

character strings, or general objects. If many workers are accessing those data for various sorting needs
you probably would not allow the original dataset to be changed for reasons of safety or security. Then
we consider an alternative to moving around the actual database components. That is, we should consider
using moving pointers to large data components, or pseudo-pointers such as an ordering array. The use
of an ordering array is shown in Fig. 4.24 where subroutine Inte§ert now includes an additional
argument.

The third argument has intent (out), as shown in line 7, and is an integer array of the same length
as the original database which has now been changed to intent (in) so the compiler will not allow us to
change the original data. If the data are properly sorted as supplied then it should not be changed and the
new order should be the same as the original sequential input. That is why line 13 initializes the return
order to a sequential list. Then we slightly change the previous sort logic so that lines 19 through 23 now
check whats in an ordered location, and change the order number when necessary, but never change the
original data. After exiting this routine you could list the information, in sorted order, without changing
the original data simply by using vector subscripts in a print statement like:

print *, database (order).

©?2001 J.E. Akin 95

1] subroutine Sort _String (lines, database)

2] ! Bubble Sort of (Changed) String Database

3 implicit none

4

5 integer, intent(ing i lines I input size
673 character(len=%*), intent(inout) :: database (lines) ! records

8 character (len = len(database (1))) :: temp ! swap holder

9 integer :: swaps _Made I number of swaps in a pass
10 integer :: count ! loop variable

11

12 interface ! to _lower

13 function to _lower (string) result (new _String)
14 character glen = *), intent(in) :: string

15 character (len = len(string)) I new _String
16 end function to _lower

17 end interface ! to _lower

18

19 do ! Repeat this loop forever... (until we break out of it)

20 swaps _Made = 0 I Initially, we've made no swaps
21 | Make one pass of the bubble sort algorithm

22 do count = 1, (lines - 1)

23 I If the element is greater than the one after it, swap them
24 if (LGT (to _lower (database (count),

25 to _lower (database (count + 1)))) then
26 temp = database (count

27 database gcount g = database (count + 1)

28 database (count + 1) = temp

29 swaps _Made = swaps —_Made + 1

30 end if

31 end do

32 I If we made no swaps, berak out of the loop.

33 if (swaps _Made == 0) exit ! do count swaps

34 end do

35 end subroutine Sort _ String

Figure 4.24 Bubble Sort of an Array of Character Strings

1] subroutine Integer _Sort (lines, database, order)

2] ! Ordered Bubble Sort of (Unchanged) Integer Database

3

4 implicit none

5 integer, intent(in) :: lines ! number of records

6 integer, intent(in) :: database Elinesg ! records in database

g integer, intent(out) :: order lines) ! the order array

9 integer :: swaps _Made ! number of swaps made in one pass
10 integer :: count ! loop variable

11 integer :: temp ! temporary holder for making swap
12

13 order = (/ (count, count = 1, lines) /) ! default order

14 do ! Repeat this loop forever... (until we break out of it)

15 swaps _Made = 0 I Initially, we've made no swaps
16 | Make one pass of the bubble sort algorithm

17 do count = 1, (lines - 1)

18 I If item is greater than the one after it, swap them

19 if (database (order (count)) > &

20 database (order (count + 1))) then

21 temp = order (count)

22 order ﬁcount) = order (count + 1)

23 order (count + 1) = temp

24 swaps _Made = swaps —_Made + 1

25 end if

26 end do

27 I If we made no swaps, break out of the loop.

28 if (swaps _Made == 0) exit ! do count swaps

29 end do

30] end subroutine Integer _Sort

Figure 4.25 An Ordered Bubble Sort of an Integer Array

Clearly you could write a very similar program using a true “pointer” array since they are now standard
in Fortran.

Next we will start to generalize the idea of sorting to include the sorting of objects that may have
numerous components. Assume the each record object to be read is defined as in Fig. 4.25.

There may be thousands, or millions, of such records to be read from a file, sorted by name and/or
number, and then displayed in sorted order. Program tagible, in Fig. 4.26 illustrates one approach to
such a problem. Here since the database of records are to read from a file we do not yet know how many

©2001 J.E. Akin 96

1] module record —Module
2] !
3] ! record _Module holds the "record" type
4] !
5 ! record is a data structure with two names and an id number.
6 type record
7 character (len=24) :: last _Name ! last name
8 character (len=24) :: first _Name ! first name
9 integer id !id number
10 end type record
11] end module record _Module
Figure 4.26 A Typical Record in a List to be Sorted
1] program test _bubble
2] !
3] ! test _bubble asks for a filename for a file of names and id
4] ! numbers, loads in the data from a file into the database,
g : finds sorting orders, and prints sorted data
7 'u_se record _Module ! need this to use the ’record’ type
8 implicit none
9] ! We define the database as an allocatable array of records.
10 type (record), allocatable :: database (:)
11
12] ! These arrays hold the sorted order of the database entries.
13 integer, allocatable :: sort _by _Name :
%451 integer, allocatable :: sort _by _Number (:
16 character (len = 64) :: file _Name | file to read data from
17 integer i lines ! number of lines of input
18 integer o file _Number ! the input file number
19 integer :: loop _Count ! loop counter
20
21 file —_Number = 1 I arbitrarily set file —Number to 1
22
23 write (*,*) 'Enter the filename to read data from:’
24 read (*/’(A64)) file _Name
25
26 ! Open our file and assign the number to ‘file _Number’
27 open (unit = file —Number, file = file —Name)
28
29 ! Find the number of lines in the input file with input _Count.
30 lines = input _Count (file _Number)
31 write (*,*) 'There are ’, lines,’ records.’
32
33 ! Allocate that many entries in the database and order arrays
34 allocate E database (lines))))
%g allocate (sort _by _Name (lines), sort _by _Number (lines))
37 ! Read the data from file into the database and close the file.
38 call read _Data (file _Number, lines, database)
38 close (file _Number)
4
41 ! Sort the database by name; the order will be in sort _by _Name.
42 call String ~ _Sort (lines, database (:)%last _Name, sort _by _Name)
ﬁ write (*,*); write (*,*) 'Data sorted by name: ’; write (**)
45 ! Print out the data in the database sorted by name
46 call show _Data (lines, database, sort _by _Name)
4; write (*,*); write (*,*) 'Data sorted by number:’; write (**)
4
49 ! Sort the database by id numbers; new order is sort _by _Number.
g(l) call Integer _Sort (lines, database (:)%id, sort _by _Number)
52 ! Print out the data in the database sorted by number.
53 call show _Data (lines, database, sort _by _Number)
54] end program test _bubble

Figure 4.27. Testing of Ordered Bubble Sorts

there are to be stored. Therefore, it is declared allocatable in line 13, and allocated later in line 34 after
we have evaluated the file size of a file named by the user. Although not generally necessary we have
selected to have an order array for names and a different one for numbers. The aby sdtame, and
sort_by_Number, respectively and are treated in a similar fashion to the database memory allocation as
noted in lines 13-14, and line 35.

In line 21 we have arbitrarily set a unit number to be used for the file. That is okay for a very small
code, but an unnecessary and unwise practice in general. The Fortran intrinsic inquire allows one to

©2001 J.E. Akin 97

determine which units are inactive and we could create a function, sayNest_ Unit, to select a safe

unit number for our input operation. After accepting a file name we open the unit, and count the number
of lines present in the file (see line 30). Had the database been on the standard input device, and not
contained any non-printing control characters, we could have easily read it with the statement

read *, database

However, it does contain tabs (ASCII character number 9), and is in a user defined file instead of the
standard input device so line 38 invokes subroutine rd2akta to get the data base. Of course, once the

tabs and commas have been accounted for and the names and id number extracted it uses an intrinsic
constructor on each line to form its database entry like:

database (line _Count) = Record (last, first, id)

After all the records have been red into the database note that line 42 extracts all the last names with the
syntax
database () last _Name

so they are copied into subroutine Strin§ort, as its second argument, and the ordered list
sort_by_Name) is returned to allow operations that need a last name sort. Likewise, subroutine In-
teger_Sort, shown above, is used in line 50 to sort the id numbers and save the data in order list
sort_by_Number. The ordered lists are used in shddata, in lines 46 and 53, to display the sorted
information, without changing the original data.

If the supplied file, say namelist, contained data in the format of (String comma String tab Number)
with the following entries:

1] Indurain, Miguel 5623

2] van der Aarden, Eric 1245
3] Rominger, Tony 3411

4] Sorensen, Rolf 341

5] Yates, Sean 8998

6] Vandiver, Frank 45

7] Smith, Sally 3821

8] Johnston, David 3421

9] Gillis, Malcolm 3785

10] Johns, William 7234
11] Johnston, Jonathan 7234
12] Johnson, Alexa 5190

13] Kruger, Charlotte 2345
14] Butera, Robert 7253

15| Armstrong, Lance 2374
16] Hegg, Steve 9231

17] LeBlanc, Lucien 23

18] Peiper, Alan 5674

19] Smith-Jones, Nancy 9082

The output would be:

1] ! Enter the filename to read data from: namelist

% : There are 19 records.

g : Data sorted by name:

6] ! Armstrong Lance 2374
7] ! Butera Robert 7253
8] ! Gillis Malcolm 3785

9] ! Hegg Steve 9231
10] ! Indurain Miguel 5623
11] ! Johns William 7234
12] ! Johnson Alexa 5190
13] ! Johnston David 3421
14] ! Johnston Jonathan 7234
15] ! Kruger Charlotte 2345
16] ! LeBlanc Lucien 23
17] ! Peiper Alan 5674
18] ! Rominger Tony 3411
19] ! Smith Sally 3821
20] ! Smith-Jones Nancy 9082
21] ! Sorensen Rolf 341
22] ! van der Aarden Eric 1245
23] ! Vandiver Frank 45
%451 : Yates Sean 8998

©2001 J.E. Akin 98

26] | Data sorted by number:
27] !
28] ! LeBlanc Lucien 23
29] ! Vandiver Frank 45
30] ! Sorensen Rolf 341
31] ! van der Aarden Eric 1245
32] ! Kruger Charlotte 2345
33] ! Armstrong Lance 2374
34] ! Rominger Tony 3411
35] ! Johnston David 3421
36] ! Gillis Malcolm 3785
37] ! Smith Sally 3821
38] ! Johnson Alexa 5190
39] ! Indurain Miguel 5623
40] ! Peiper Alan 5674
41] ! Johns William 7234
42] ! Johnston Jonathan 7234
43] ! Butera Robert 7253
44] ! Yates Sean 8998
45] | Smith-Jones Nancy 9082
46] ! Hegg Steve 9231
Pass 1 Pass 2 Pass 3
Level Level Level
1 2 3 4 5 6 1 2 3 4 5 1 2
Sorted Sorted Sorted
b b b b b b b a a a a a a
e e a a a a a b b b b b b
a a e d d d d d d d d d c
d d d e e e e e e e C c d
f f f f f c c c c c e e e
C C c c c f f f f f f f f
Is _Was* Is_Was Is_Was
1 1 1 1 1 3 3 3 3
2 3 3 3 3 1 1 1 1
3 2 4 4 4 4 4 4 6
4 4 2 2 2 2 6 6 4
5 5 5 6 6 6 2 2 2
6 6 6 5 5 5 5 5 5
* Is—_Was(j) = k. Whatis positionj was position k& .

Figure 4.28 Sorting via an Order Vector, Array (IsVas)— abcdef

4.11 Exercises

1

Frequently we need to know how many lines exist in an external file that is to be used by our
program. Usually we need that informationdynamically allocate memory for the arrays

that will be constructed from the file data to be read. Write a F90 program or routine that will
accept a unit number as inpapen that unit, loop over the lines of data in the file connected to the
unit, and return the number of lines found in the file. (A external file ends wheindtz¢ from

aread is less than zero.)

Arelated problem is to read a table of data from an external file. In addition to knowing the number
of lines in the file it is necessary to know the number of entities (columns) per line and to verify
that all lines of the file have the same number of columns. Develop a FO0 program for that purpose.
(This is the sort of checking that theAviLAB load function must do before loading an array of
data.)

©2001 J.E. Akin 99

3 Write a program that displays the current date and time and uses the niedul®c , in Fig. 4.10,
to display the CPU time required for a calculation.

4 Develop a companion function called _upper that converts a string to all upper case letters.
Test it with the above program.

5 Develop a function that will take an external file unit number and count the number of lines in the
file connected to that unit. This assumes that the file has been “opened” on that unit. The interface
to the function is to be:

interface
function inputCount(unit) result(linesOflnput)
integer, intent(in) :: unit ! file unit number
integer 2 linesOflnput ! result

end function inputCount
end interface

6 Assume the file in the previous problem contains two real values per line. Develop a subroutine
that will read the file and return two vectors holding the first and second values, respectively. The
interface to the subroutine is to be:

interface
subroutine readData (inFile, lines, X, y)
integer, intent(in) :: inFile, lines I file unit, size
real, intent(out) :: x(lines), y(lines) ! data read

end subroutine readData
end interface

7 Written replies to the questions given below will be required. All of the named files are provided
in source form as well as being listed in the text. The cited Figure number indicates where some or
all of the code is discussed in the text.

(a) Figure 1.3— hello.fo0
What is necessary to split the printing statement so that “Hello,” and “world” occur on differ-
ent program lines? That is, to continue it over two lines?

(b) Figure 4.1— arithmetic.f90
What is the meaning of the symbaoinod) used to get the MadResult?
What is the meaning of the symbot¥{() used to get the PowResult?

(c) Figure 4.3—array _index.f90
Is it good practice to use a loop index outside the loop? Why?

(d) Figure 4.4— more _or _less.fo0
What does the symbol{) mean here?
What does the symbol«=) mean here?

(e) Figure 4.5—if _else.fo0
What does the symbol.énd.) mean here? Can its preceding and following arguments be
interchanged (is it commutative)?

(f) Figure 4.6— and _or _not.fo0
What does the symbol.fot.) mean here?
What does the symbol.¢r.) mean here? Can its preceding and following arguments be
interchanged (is it commutative)?

(g) Figure 4.7— clip.fo0
What does the symbol(=) mean here?

(h) Figure 4.8— maximum.f90
What are the input and output arguments for the maxint function?

©2001 J.E. Akin 100

10

The vertical motion of a projectile at any time, t, has a position given Byy, + Vo xt —1/2x g*t2,

and a velocity o/ =V, — g *t when upward is taken as positive, and where the initial conditions
on the starting position and velocity, &t 0, arey, andV;, respectively. Here the gravitational
acceleration termy, has been taken downward. Recall that the numerical valyedafpends on
the units employed. Use metric units wigh= 9.81m/s? for distances measured in meters and
time in seconds.

Write a C++ or F90 program that will accept initial valuesygfand 1y, and then compute and
print y and V' for each single input value of time, Print the results fog, = 1.5 meters and
Vo = 5.0m/s for timest = 0.5, 2.0, and 4.0 seconds.

Modify the projectile program written in Problem 2 to have it print the time, position, and velocity
for times ranging from 0.0 to 2.0 seconds, in increments of 0.05 seconds. If you use a direct loop
do not use real loop variables. Conclude the program by having it list the approximate maximum
(positive) height reached and the time when that occurred. The initial data will be the same, but
should be printed for completeness. The three columns of numbers should be neat and right jus-
tified. In that case the default print format (print * in F90) will usually not be neat and one must
employ a “formatted” print or write statement.

The Greatest Common Divisor of two positive integers can be computed by at least two differ-
ent approaches. There is a looping approach known as the Euclidean Algorithm which has the
following pseudocode:

Rank two positive integers as max and min.
do while min > 0
Find remainder of max divided by min.
Replace max by min.
Replace min by the remainder
end do
Display max as the greatest common divisor.

Implement this approach and test withhz = 532 = 28 * 19 andmin = 112 = 28 x 8. The
names of the remainder functions are given in Table 4.7.

Another approach to some algorithms is to use a “recursive” method which employs a subprogram
which calls itself. This may have an advantage in clarifying the algorithm, and/or in reducing
the round off error associated with the computations. For example, in computer graphics Bernstein
Polynomials are often used to display curves and surfaces efficiently by using a recursive definition
in calculating their value at a point.

The Greatest Common Divisor evaluation can also be stated in terms of a recursive function, say
gcd, having max and min as its initial two arguments. The following pseudocode defines the
function:

gcd(max, min) is

a) max if min = 0, otherwise
b) gcd(min, remainder of max divided by min) if min > 0

Also implement this version and verify that it gives the same result as the Eulerian Algorithm. Note
that F90 requires the use of the word "recursive” when defining the subprogram statement block.
For example,

recursive function gcd(...) result(g)

end function gcd

©2001 J.E. Akin 101

11

12

13

14

It is not uncommon for data files to be prepared with embedded tabs. Since it is a non-printing
control character you can not see it in a listing. However, if you read the file expecting an integer,
real, or complex variable the tab will cause a fatal read error. So one needs a tool to clean up such
a file.

Write a program to read a file and output a duplicate copy, except that all tabs are replaced with a
single space. One could read a complete line and check its characters, or read the file character by
character. Remember that C++ and F90 have opposite defaults when advancing to a new line. That
is, F90 advances to the next line, after any read or write, unless you include the format control,
advance = 'no’ , while C++ does not advance unless you include the new line contat, “

end!”, and C does not advance unless you include the new line contrdl, “

Engineering data files consisting of discrete groups of variable types often begin with a control line
that lists the number of rows and columns of data, of the first variable type, that follow beginning
with the next line. At the end of the data block, the format repeats: control line, variable type
data block, etc. until all the variable types are read (or an error occurs where the end of file is
encountered). Write a program that reads such a file which contains an integer set, a real set, and a
second real set.

Neither C++ or F90 provides an inverse hyperbolic tangent function. Write such a function, called
arctanh . Test it with three different arguments against the values given hyUs .

Often if one is utilizing a large number of input/output file units it may be difficult to keep up with
which one you need. One approach to dealing with that problem may be to define_ &lasis

or to create an unitsModule to provide functionality and global access to file information. In
the latter case assume that we want to provide a function to simply find a unit number that is not
currently in use and utilize it for our input/output action:

interface
function get _next _io _unit () result (next)
integer :: next ! the next available unit number
end function get _next _io _unit

end interface

Use the Fortran INQUIRE statement to build such a utility. If you are familiar with Matlab you
will see this is similar to its fopen feature.

©2001 J.E. Akin 102

Chapter 5

Object Oriented Methods

5.1 Introduction

In Section 1.7 we outlined procedures that should be considered while conducting the object-oriented
analysis and object-oriented design phases that are necessary before the OOP can begin. Here we will
expand on those concepts, but the reader is encouraged to read some of the books on those subjects.
Many of the references on OOA and OOD rely heavily on detailed graphical diagrams to describe the
classes, their attributes ans states, and how they interact with other classes. Often those OO methods do
not go into any programming language specific approaches. Our interest is on OOP so we usually will
assume that the OOA and OOD have been completed and supplied to us as a set of tables that describe the
application, and possibly a software interface contract. Sometimes we will use a subset of the common
OO methods diagrams to graphically represent the attributes and members of our classes. Since they
being used for OOP the graphical representations will contain, in part, the intrinsic data type descriptions
of the language being employed, as well as the derived types created with them.

5.2 The Dirill Class

Our first illustration of typical OO methods will be to apply them to a common electric drill. It feeds

a rotating cutting bit through a workpiece, thereby removing a volume of material. The effort (power
or torque) required to make the hole clearly depends on the material of the workpiece, as well as the
attributes of the drill.

Table 5.1 contains a summary of the result of an OO analysis for the drill object. They are further
processed in Table 5.2 which gives the results of the OO design phase. When the OOD phase is complete
we can create the graphical representation ofwilir class as shown in Fig. 5.1. At this point one can
begin the actual OOP in the target language. The coding required for this object is so small we could
directly put it all together in one programming session. However, that is usually not the case. Often
segments of the coding will be assigned to different programming groups that must interface with each
other to produce a working final code. Often this means that the OOP design starts with defining the
interfaces to each member function. That is, all of the given and return arguments must be defined with
respect to their type, whether they are changed by the member, etc. Such an interface can be viewed
as a contract between a software supplier and a client user of the software. Once the interface has been
finalized, it can be written and given to the programmer to flesh out the full routine, but the interface itself
can not be changed.

The interface prototype for our drill object members are given in Fig. 5.2. In this case the remaining
coding is defined by a set of equations that relate the object attributes, selected member results, material
data, and a few conversion constants to obtain the proper units. Those relationships are given as:

©2001 J.E. Akin 103

Attributes

What knowledge does it possess or require?
Rotational speed (revolutions per minute)
Feed rate per revolution (mm/rev)
Diameter of the bit (mm)

Power consumed (W)

Behavior

What questions should it be able to answer?
¢ What is the volumetric material removal rate? (fis)
e What is the cutting torque? ()
e What is the material being removed?

Interfaces

What entities need to be input or output?
e Material data
e Torque produced
e Power

Table 5.1 Electric Drill OO Analysis

Area: A=nd> /4 (mm?)
Angular velocity : w, 1rev/min = 2% rad/s (rad/s)
Material removalrate : M = A - feed - w (mm?/s)
Power: P=m-u=T-w W)
Torque: T =P/w, 1m=1000mm (Nmm)
Diameter: d (mm)
Feedrate: feed (mm/rev)
Material dissipation: u (\s/mn?)
Drill Class
real diameter
real feed rate
real speed
real pi
Drill Drill_ —
Drill get mr_ rate >
Drill get_torgue >
Drill in e
Drill out P
[prill | Drill |

Figure 5.1 Graphical Representation of an Electric Drill Class

The full implementation of the drill class is given in Fig. 5.3, anthain program to test the drill
class is given in Fig. 5.4. When we wrote the manual construbtidr, _, in this example we chose to

©2001 J.E. Akin 104

O©O~NDUTAWN -

interface

! type (Drill) :: x ; x = Drill (d, f, s) ! intrinsic constructor

function Drill _ (d, f, s) result (x) ! default constructor
real, optional :: d, f, s I' given diameter, feed, speed
type (Drill) X ! the Drill instance

end function Drill —

function get _rate () result (r) ! material removal rate
type (Dr|II) |ntent(|n) I a given drill instance
real T ! volume cut rate

end function get —_mr_rate

function get —torque (x unit _Power) result (t) ! torque from power
type (Drill), intent(in) : ! given drill instance

al in ent(ln) ounit _Power ! dissipated in cutting

real oot ! resulting torque

end function get _torque

subroutine in (x) ! read a Drill instance
type (Drill), intent(out) :: X ; end subroutine in

subroutine out (x) ~ ! output a Drill instance
dype (Drill), intent(in) : ! given drill' instance

end subroutine out

end interface

Figure 5.2 Drill Object Contract Interface Prototype

module class _Drill | class name
implicit none ! enforce strong typing
real, parameter opi = 3.141592654 ! or use math _constants
public :; Drill, Drill _, get _mr_rate, get _torque
real, private diameter, feed, speed
type Drill | defined type, private data

real :: diameter, feed, speed ; end type

contains ! member functions, overloaded & new operators

I type (Drill) :: x ; x = Drill (d, f, s) ! intrinsic constructor
function Drill _ (d f, s) result (x) ! default constructor
real, optional :: d f, I given diameter, feed, speed
type (Drill) i I the Drill instance
if (present(d) and present(f) .and. present(s)) then
x = Drill (d, f, s) I intrinsic constructor
else I check various input options

if (.not. (present(d))) then ! no diameter given
x = Drill (10., 0., 0.) | default 10mm, at rest zero
end if ! default form
end if ! full form
end function Drill _

function get _m_r_rate (x) result (r) ! material removal rate, mm
type (Drill), intent(in) :: ! a given drill instance
real wr | volume cut rate

r = 0.25 * pi * x%diameter * x%diameter * x%feed * x%speed/60.
end function get _mr_rate

function get _torque (x, unit _Power) result (t) ! torque from power
type (Drill), intent(in) :: x ! given drill instance
real, intent(in) ounit _Power ! dissipated in cutting
real oot I resulting torque
real : rad _per _sec ! radians per second
rad _per _sec = 2 * pi * x%speed / 60.
t = get _mr_rate(x) * unit _Power / rad _per _sec | torque

end function get _torque

subroutine in (x) ! input a Drill instance
type (Drill), intent(out) :: x ! given drill instance
read *, Xx I get intrinsic data

end subroutlne in

subroutine out (x) ! output a Drill instance
type (Drill), intent(in) :: X ! given drill instance
print *,"Drill"; print *, " Diameter: ",x % diameter
print *" Feed : "X % feed; print *" Speed : "X % speed

end subroutine out

end module class _Drill ! close class definition

Figure 5.3 A Electrical Drill Class

©2001 J.E. Akin 105

3/sec

Attributes

Name Type Private Description

diameter real Y Bit diameter (mm)

feed real Y Bit feed rate (mm/rev)

speed real Y Bit rotational speed (rpm)
Behavior

Name Private Description

drill _ N Default constructor using all attributes, or none

get_mr_rate N Material removal rate (mtfsec)

get_torque N Required torque (ix)

power N Required power (W)
Data

Name Description

u Material power description per unit volume (W s//fjm
Interfaces

Name Description
read Input drill and material data
print Output object results

Table 5.2 Electric Drill OO Design

utilize the intrinsic constructdprill (in lines 18 and 21) rather than including lines to assign values to
each of the components of our data type. If at some later time we add or delete a component in the type
declaration then the number of required arguments for the intrinsic constructor would also change. That
would require the revision of all members that used the intrinsic constructor. An advantage of the object-
oriented approach to programming is that we know that all such routines (that can access the intrinsic
constructor) are encapsulated within this class declaration module, and we can be sure that no other code
segments must be changed to remain consistent with the new version. That is, OOP helps with code
maintance.

5.3 Global Positioning Satellite Distances

Consider the problem of traveling by ship or airplane between two points on the earth. Here we assume
that there are no physical obstructions that prevent the vehicle from following the shortest path, which is
an arc of a "great circle” on the earth’s surface. We will neglect the altitude of the airplane in comparison
to the earth’s radius. The original and final positions are to be defined in terms of their angles of latitude
(measured N or S from the equator) and longitude (measured E or W from Greenwich, England). These
two attributes define an angular position from a defined reference point on the spherical surface of the
earth. They are measured in terms of whole degrees, whole minutes (1 degree = 60 minutes), and seconds
(1 minute = 60 seconds). Historically, whole seconds are usually used, but they give positions that are
only accurate to about 300 meters. Thus, we will use a real variable for the seconds to allow for potential
reuse for the software for applications that require more accuracy, such as those using Global Positioning
Satellite (GPS) data. Recall that latitude and longitude have associated directional information of North
or South, and East or West, respectively. Also in defining a global position point it seems logical to
include a name for each position. Depending on the application the name may identify a city or port, or
a "station number” in a land survey, or a "path point number” for a directed robot motion.

Eventually, we want to compute the great arc distance between given pairs of latitude and longitude.
That solid geometry calculation requires that one use angles that are real numbers measured in radi-
ans (2i = 360 degrees). Thus our problem description begins witArate class as its basic class.

Both latitude and longitude will be defined to be of thesiton _Angle class and we observe that
a Position _Angle is a "Kind-Of” Angle , or aPosition _Angle has an "Is-A” relationship to an
Angle . The positions we seek are on a surface so only two measures (latitude and longitude) are needed

©2001 J.E. Akin 106

program main ! test the Drill class

1

2 use class _Drill ! i.e., all public members and public data

3 implicit none

4 type (Drill) :: drill _A, drill _B, drill _C

5 real ounit _Power

6 print *, "Enter diameter (mm), feed (mm/rev), speed (rpm):"

7 call in (drill _A

8 print *, "Enter average power unit for material (W.s/mm**3):"

9 read *, unit _Power ; call out (drill _A) ! user input
10 print *, "Material removal rate is: ", get _mr _rate(drill _A), &
11 " mm**3/sec"

12 print *, "Torque in this material is: ", &

13 & get _torque (drill _A, unit _Power), " W.s"

14 drill _B =Drill _ (5., 4., 3.); call out (drill —B) ! manual
15 drill _C = Drill _ () call out (drill _C) ! default
16] end program ! Running gives
17] ! Enter diameter (mm), feed (mm/rev), speed (rpm): 10 0.2 800

18 ! Enher average power unit for material (W.s/mm**3): 0.5

1 ! Dri

20] ! Diameter: 10.

21] ! Feed : 0.200000003

22] ! Speed : 800.

23] ! Material removal rate is: 209.439514 mm**3/sec

24] ! Torque in this material is: 1.25 W.s

25] ! Dirill

26] ! Diameter: 5.

271 ! Feed D4,

28] ! Speed : 3.

291 ! Dirill

30] ! Diameter: 10.

31] ! Feed : 0.E+0

32] ! Speed : 0.E+0

Figure 5.4 Testing a Electrical Drill Class

to uniquely define the location, which we will refer to as tlebal _Position . Here we see that the
two Position _Angle object values are a "Part-Of” thelobal _Position class, or we can say that
aGlobal _Position "Has-A” Position _Angle .

The sort of relationships between classes that we have noted above are quite common and relate to the
concept of inheritance as a means to reuse code. In an "Is-A” relationship, the derived class is a variation
of the base class. Here the derived classition _Angle forms an "Is-A” relation to the base class,
Angle . In a "Has-A" relationship, the derived class has an attribute or property of the base class. Here
the derived class dflobal _Position forms a Has-A relation to its base classPokition _Angle .

Also, theGreat _Arc class forms a "Has-A” relation to th@lobal _Position class.

Looking back at previous classes, in Chapter 3, we observe that the class Student "Is-A” variation
of the classerson and the clas®erson forms at least one "Has-A" relationship with the clazste .

In general we know that a graduate student is a "Kind-Of” student, but not every student is a graduate
student. This subtyping, or "Is-A” relationship is also called interface inheritance. Likewise, complicated
classes can be designed from simpler or composition inheritance.

The OO Analysis Tables for the classes@®at _Arc, Global _Position , Position _Angle ,
andAngle are given in Tables 5.3 through 5.6, respectively. Historically people have specified lati-
tude and longitude mainly in terms of whole (integer) degrees, minutes, and seconds. Sometimes you
find navigation charts that give positions in whole degrees and decimal minutes. Today GPS data are
being used for various high accuracy positioning such as land surveys, or the control of robots as they
move over distances of a few meters. The latter will clearly need decimal seconds values in their con-
structor. Thus, we will create a number of constructors for the position angles. In the next chapter we
will review how to access any of them, based on the signature of their arguments, through the use of
a single polymorphic routine name. These considerations and the OOA tables lead to the construction
of the corresponding set of OO Design Tables given in Tables 5.7 through 5.10. Those OOD tables
could lead to software interface contracts to be distributed to the programming groups. When combined
and tested they yield the corresponding class modules which are shown for the stagse®osi-
tion _Angle, Global _Position, andGreat _Arc in Figs. 5.6 to 5.12, respectively. They in turn
are verified by thenain program given in Fig. 5.13 along with its output.

©2001 J.E. Akin 107

Attributes
What knowledge does it possess or require?
e Global position 1 (latitude, longitude)
e Global position 2 (latitude, longitude)
e Smallest arc (km)
¢ Radius of the earth (km)
Behavior
What questions should it be able to answer?
e What is the (smallest) great arc between the points
What services should it provide?
e Default value (Greenwich, Greenwich, 0.0)
e Initialize for two positions
e Convert kilometers to miles

Relationships
What are its related classes?
e Has-A pair of Global Positions
Interfaces
What entities need to be input or output?
e The distance between two positions.

Table 5.3 Great Arc OO Analysis

Attributes
What knowledge does it possess or require?
o Latitude (degrees, minutes, seconds, and direction)
e Longitude (degrees, minutes, seconds, and direction)
Behavior
What questions should it be able to answer?
e What is the latitude of the location
e What is the longitude of the location
What services should it provide?
e Default position (Greenwich)
e Initialize a position (latitude and longitude)
Relationships
What are its related classes?
o Part-Of GreatArc
e Has-A pair of Position Angles
Interfaces
What entities need to be input or output?
e The latitude and longitude, and a position name.

Table 5.4 Global Position OO Analysis

©2001 J.E. Akin 108

Attributes
What knowledge does it possess or require?
e Magnitude (degrees, minutes, seconds)
e Direction (N or S or E or W)
Behavior
What questions should it be able to answer?
e What is its magnitude and direction
What services should it provide?
e Default value (0, 0, 0.0, N)
e [nitialization to input value
Relationships
What are its related classes?
e Part-Of Global Positions

e Is-A Angle
Interfaces
What entities need to be input or output?
e None
Table 5.5 Position Angle OO Analysis
Attributes

What knowledge does it possess or require?
e Signed value (radians)
Behavior
What questions should it be able to answer?
e What is the current value
What services should it provide?
default values (0.0)
Conversion to signed decimal degrees
Conversion to signed degree, minutes, and decimal seconds
Conversion from signed decimal degrees
Conversion from signed degree, minutes, and decimal seconds

Relationships
What are its related classes?
e Base Class for PositianAngle
Interfaces
What entities need to be input or output?
e None

Table 5.6 Angle OO Analysis

©2001 J.E. Akin 109

Attributes
Name Type Private Description
point_1 Global Position Y Lat-Long-Name of point 1
point_2 Global Position Y Lat-Long-Name of point 2

arc real Y Arc distance between points
Behavior

Name Private Description

Great_ Arc_ N Constructor for two position points

get_Arc N Compute great arc between two points
Data

Name Description

Earth_Radius.Mean Conversion factor

m_Per_Mile Conversion factor
Interfaces

Name Description

List_Great_Arc Print arc values (two positions and distance)
List_Pt_to_Pt Printdistance and two points

Table 5.7 Class Great Arc OO Design

Attributes
Name Type Private Description
latitude Position. Angle Y Latitude
longitude Position Angle Y Longtitude

name characters Y Point name

Behavior
Name Private Description
Global_Position- N Constructor for d-m-s pairs and point name
set_Lat_and_Long_at N Constructor for lat-long-name set
get_Latitude N Return latitude of a point
get_Longitude N Return longitude of a point
set_Latitude N Insert latitude of a point
set_Longitude N Insert longitude of a point

Data
Name Description
None

Interfaces
Name Description

List_Position Print name and latitude, longitude of a position

Table 5.8 Class Global Position OO Design

©2001 J.E. Akin 110

Attributes

Name Type Private Description

deg integer Y Degrees of angle

min integer Y Minutes of angle

sec real Y Seconds of angle

dir character Y Compass direction
Behavior

Name Private Description

Default_Angle N Default constructor

Decimal_min Constructor for decimal minutes

N
Decimal_sec N Constructor for decimal seconds

Int_deg N Constructor for whole deg

Int_deg_min N Constructor for whole deg, min
Int_deg_min_sec N Constructor for whole deg, min, sec
to_Decimal_Degrees N Convert position angle values to decimal degree
to_Radians N Convert position angle values to decimal radian

Data
Name Description
None

Interfaces

Name Description
List_Position_Angle Print values for position angle
Read_Position_Angle Read values for position angle

Table 5.9 Class Position Angle OO Design

Attributes

Name Type Private Description

rad real Y Radian measure of the angle (rad)
Behavior

Name Private Description

Angle_ N A generic constructor

List_Angle N List angle value in radians and degrees
Data

Name Description

Deg_per_Rad Unit conversion parameter

Table 5.1Q Class Angle OO Design

©2001 J.E. Akin 111

Angle Class
‘ real ‘ rad
‘ real ‘ Deg_Per _Rad
Angl e Angl e_ —
Angl e Li st _Angl e —
Angl e Angl e

Figure 5.5 Graphical Representation of an Angle Class

1] module class _Angle ! file: class —Angle.fo0
2 implicit none

3 type Angle I angle in (signed) radians

4 private

5 real :: rad I radians

6 end type

7 real, parameter:: Deg _Per _Rad = 57.2957795130823209d0
8] contains

9

10 function Angle _ (r) result (ang) ! public constructor
11 real, optional :: r I radians

12 type (Angle) ;ang

13 if (present(r)) then

14 ang = Angle (r) ! intrinsic constructor
15 else ; ang = Angle (0.0) ! intrinsic constructor

16 end if ; end function Angle —

17

18 subroutine List _Angle (ang)

19 type (Angle), intent(in) :: ang

20 print *, 'Angle = ', ang % rad, ’ radians (, &

21 Deg _Per _Rad * ang % rad, ' degrees)’
22 end subroutine List _Angle

23] end module class _Angle

Figure 5.6: A Definition of the Class Angle

©2001 J.E. Akin 112

ttetevvesyd

Position_Angle Class
i nt eger deg
i nt eger mn
real sec
character dir
Posi ti on_Angl e Def aul t _Angl e
Posi tion_Angl e Decimal _nmin
Posi ti on_Angl e Deci mal _sec
Posi ti on_Angl e I nt_deg
Posi tion_Angl e Int_deg_nmin
Posi ti on_Angl e Int_deg_m n_sec
Posi tion_Angl e Li st _Position_Angle
Posi ti on_Angl e Read_Posi ti on_Angl e
real to_Deci mal _Degr ees
r eal t o_Radi ans
Position_Angle| Position_Angle

Figure 5.7: Graphical Representation of a Position Angle Class

(Fig. 5.8, A Definition of the Class Position Angle (Continued))

©2001 J.E. Akin

113

1] module class _Position _Angle ! file: class _Position _Angle.f90
2 use class _Angle

3 implicit none

4 type Position _Angle I angle in deg, min, sec

5 private)]

6 integer :: deg, min | degrees, minutes

7 real I sec ! seconds

8 character :: dir IN|S E| W

9 end type

10] contains

11

12 function Default _Angle () result (ang) ! default constructor
13 type (Position _Angle) :: an

14 ang = Position _Angle (0, 0, 0., 'N’) ! intrinsic

15 end function Default _Angle

16

17 function Decimal _min (d, m, news) result (ang) ! public
18 integer, intent(in) :: d | degrees

19 real, intent(in) = m I minutes

20 character, intent(in) : news I'N|S E| W
21 type (Position _Angle) : ang | angle out
22 integer ©omin I minutes

23 real TS I seconds

24 min = floor (m) ; s = (m - min)*60. ! convert

25 ang = Position _Angle (d, m, s, news) ! intrinsic

26 end function Decimal —min

27

28 function Decimal _sec (d, m, s, news) result (ang) ! public
29 integer, intent(in) :: d, m | degrees, minutes
30 real, intent(in) = s | seconds

31 character, intent(in) : news I'N|S E| W
32 type (Position _Angle) :: ang I angle out
33 ang = Position _Angle (d, m, s, news) ! intrinsic
34 end function Decimal _sec

35

36 function Int _deg (d, news) result (ang ! public

37 integer, |ntent(|n; wd I degrees, minutes

38 character, intent(in) :: news IN[S E| W

39 type (Position _Angle) : | angle out

40 ang = Position _Angle (d 0 0.0, news) ! intrinsic

41 end function Int _deg

42

43 function Int _deg _min (d, m, news) result (ang) ! public

44 integer, intent(in; md, m I degrees, minutes

45 character, intent(in) :: news IN|S E|W
46 type (Position _Angle) : I angle out

47 ang = Position _Angle (d m 0.0, news) ! intrinsic

48 end function Int _deg —_min

49

50 function Int _deg _min _sec (d, m, s, news) result (ang) ! public
51 integer, intent(in) :: d, m, s ! deg, min, seconds

52 character, intent(in) :: news I'N|S E|W
53 type (Position _Angle) : | angle out

54 ang = Position Angle (d m real(s), news) ! intrinsic

gg end function Int _deg _min _sec

57 subroutine List _Position _Angle (a)

58 type (Position _Angle) :: a I angle

59 print 5, a ; 5 format (i3, " ", 2, ", 8.5, ™ ’, al)

g(l) end subroutine

62 subroutine Read _Position _Angle (a)

63 type (Position _Angle) :: a I angle

64 read *, a%deg, a%min, a%sec, a%dir ; end subroutine

65

66 function to _Decimal _Degrees (ang) result (degrees)

67 type (Position _Angle), intent(in) :: ang

68 real - degrees

69 degrees = ang%deg + ang%min/60. + ang%sec/60.

70 if (ang%dir == "S" .or. ang%dir == "s" .or. &

71 ang%dir == "W" .or. ang%dir == "w") degrees = -degrees
7% end function to _Decimal _Degrees

7

74 function to _Radians (ang) result (radians)

75 type (Position _Angle), intent(in) :: ang

76 real radia

77 radians = (ang%deg + ang%min/60. + ang%sec/GO)/Deg _Per _Rad
78 if (ang%dir == "S" .or. ang%dir == "s" . &

79 ang%dir == "W" .or. ang%dir == W) radians = -radians
80 end function to _Radians

81] end module class _Position _Angle

Figure 5.8 A Definition of the Class Position Angle

Global_Position Class
Posi tion_Angl e | atitude
Posi tion_Angl e | ongi t ude
character name
d obal _Position G obal _Position_ —>
G obal _Position| set _Lat_and Long at =—p
Posi ti on_Angl e get _Latitude —
Position_Angle get _Longi tude —>
Position_Angl e set _Latitude —
Posi tion_Angl e set _Longi tude —
d obal _Position Li st _Position —
G obal _Position| d obal _Position

Figure 5.9 Graphical Representation of a Global Position Class

©2001 J.E. Akin 114

1] module class _Global _Position

2 use class _Position _Angle

3 implicit none

4 type Global _ Position

5 private

6 type (Position _Angle) :: latitude, longitude

7 character (len=31) ;. name

8 end type Global _Position

9] contains

10

11 function Global _Position _ (d1, m1, s1, c1, & ! constructor
12 d2, m2, 52 c2 n) result (GP)

13 integer, intent(in = dl, mi, sl ! deg, min, sec

14 integer, intent(in d2, m2, s2 ! deg, min, sec

15 character, intent(in - cl c2 I compass

16 character (len=*) I name

17 type (Global Posmon) GP ! returned position
18 GP % latitude = Int _deg_min _sec (d1, ml, si1, c1

19 GP % longitude = Int _deg _min _sec (d2, m2, s2, c2

20 GP % name = n ; end function Global _Position

21

22 function set _Lat _and _Long _at (lat, long, n) result (GP) ! cons
23 type (Position _Angle), intent(in) :: lat, long I angles
24 character (len=¥), intent(in) :: n I name
25 type (Global _Position) . GP ! position
26 GP % latitude = lat ; GP % longitude = long

27 GP % name =n ; end function set _Lat _and _Long _at
28

29 function get _Latitude (GP) result (lat)

30 type EGIobaI _Posmon) intent(in) :: G

31 type Position _Angle) o lat

32 lat = GP % latitude ; end function get _ Latitude

33

34 function get _Longitude (GP) result (Iong)

35 type EGIobaI _Position), intent(in) :

36 type (Position _Angle) : long

%g long = GP % longitude ; end function get _Longitude
39 subroutine set _ Latitude (GP, lat)

40 type (Global _Position), intent(inout) :: GP

41 type (Position _Angle), intent(in) o lat

42 GP % latitude = lat ; end subroutine set _ Latitude

43

44 subroutine set _Longitude (GP, long)

45 type EGIobaI _Position), intent(inout) :: GP

46 type (Position _Angle), intent(in) :: long

47 GP % longitude = long ; end subroutine set _Longitude
48

49 subroutine List _Position (GP)

50 type (Global _Position), intent(in) :: GP

51 print *, 'Position at ', GP % name

52 write (*,'(" Latitude: ")’, advance = "no")

53 call List _Position _Angle (GP % latitude)

54 write (*,'(" Longitude: ")’, advance = "no"

55 call List _Position _Angle (GP % longitude)

56 end subroutine List _Position

57] end module class _Global _Position

Figure 5.1Q0 A Definition of the Class Global Position

©2001 J.E. Akin 115

O©OO~NDTLAWN =

Great_Arc Class
d obal _Posi tion point_1
d obal _Position point_2
real arc
real Eart h_Radi us_Mean
real mPer_Mle
Geat_Arc Geat Arc_ —
real get _Arc —
Great _Arc List_Geat_Arc —
real List_PT _to_ Pt —
Great _Arc Great _Arc

Figure 5.11 Graphical Representation of a Great Arc Class

module class _Great _Arc
use class _Global _Position
implicit none
real, parameter :: Earth _Radius _Mean = 6.371d6 ! meters
real, parameter :: m _Per _Mile = 1609.344
type Great _Arc
type (Global _Position) :: point _1, point _2
real arc
end type Great _Arc
contains
function Great _Arc _ (GP1, GP2) result (G _A) ! constructor
type (Global _Position), intent(in) :: GP1, GP2 ! points
type (Great _Arc) © G _A | earth arc
G _A = Great _Arc (GP1, GP2, get _Arc (GP1, GP2)) ! intrinsic
end function Great _Arc _
function get _Arc (GP1, GP2) result (dist)
typ(la (Global _Position), intent(in) :: GP%{- GP2
rea o dist

real :: latl, lat2, longl, long2
I convert latitude, longitude to radians

latl = to _Radians (get _Latitude (GP1
lat2 = to _Radians (get _Latitude (GP2
longl = to _Radians (get _Longitude gGPlB
long2 = to _Radians (get _Longitude (GP2
! compute great circle arc of earth
dist = 2 * Earth _Radius _Mean &
* asinﬁ sqrt ((sin((latl - lat2)/2.))**2
+ cos(latl)*cos(lat2)*(sin((longl-long2)/2.))**2))
end function get _Arc
subroutine List _Great _Arc (A _to _B)
type (Great _Arc), intent(in) 1 A _to _B
real o dist 1 in meters
print * ; print *, "The great circle arc between"
call List _Position (A _to _B % point _1
call List _Position (A _to _B % point _2
dist = A _to _B % arc I convert to km and miles
print *, "is ", dist/1000, " km (", dist/m _Per _Mile, "miles)."
end subroutine List _Great _Arc
subroutine List _Pt _to _Pt (GP1, GP2) ! alternate
type (Global _Position), intent(in) :: GP1, GP2 ! points
real ;arc | distance
print * ; print *, "The great circle arc between"
call List _Position (GP1) ; call List _Position (GP2)
arc = get _Arc (GP1, GP2) 1 in meters
print *, "is ", arc/1000, " km (", arc/m _Per _Mile, "miles)"
end subroutine List _Pt _to _Pt
end module class _Great _Arc

Figure 5.12 Definition of the Class Great Arc

©2001 J.E. Akin 116

©2001 J.E. Akin

1] program main

2 use class _Great _Arc

3 implicit none

4 type (Great _Arc) ;oarc

5 type (Global _Position) :: g1, g2

6 type (Position _Angle) : al, a2

7 type (Angle) ©ang

8 real] - deg, rad) .

9 al = Decimal _sec (10, 30, 0., "N"); call List _Position _Angle(al
10 al = Int _deg _min _sec(10, 30, 0, "N"); call List _Position _
11 al = Int _deg_min (10, 30, "N"); call List _Position _An
12 al = Int d 20, "N"); call List _Position _Angle(al
13] ! call Read _Position _Angle (a2

14 a2 = Decimal _sec (30, 48, 0., "E"); call List _Position _Angle(a2
15 ang = Angle _ (1.0) ; call List _Angle (ang)

16 deg = to _Decimal _Degrees (al) ; print *, deg, deg/Deg _Per _Rad
17 rad = to _Radians (al) ; print *, ra

18] !

19 gl = set _lLat _and_Long _at (al, a2, 'gl’)

20 call List _Position (g1)

21 g2 = Global _Position _ (20, 5, 40, "S", 75, 0, 20, "E", 'g2)

22 call List _Position (g2)

23 print *, "Arc = ", get _Arc (g1, g2), " (meters)"

24 gl = Global _Position _ , 0,0, "N", 0, 0, 0, "E", "equator’)

25 g2 = Global _Positon _ (90, 0, 0, "N", 0, 0, 0, "E", 'N-pole’)

26 call List _Pt _to _Pt (91, g2)

27 arc = Great _Arc _ (g1, g2) ; call List _Great _Arc (arc)

28] end program main ! running gives:

29] ! 10 30" 0.00000" N ;! 10 30 0.00000" N ; ! 10 30" 0.00000" N

30] ! 20 0 0.00000" N ;! 30 48 0.00000" N

31] ! Angle = 1.000000000 radians (57.29578018 degrees)

32] | 20.00000000 0.3490658402 ; 1 0.3490658402

33] ! Position at %1 ; | Position at g2

34] ! Latitude: 0 0 0.00000" N ;! Latitude: 20 5’ 40.00000" S

35] ! Longitude: 30 48 0.00000" E ;! Longitude: 75 0’ 20.00000" E

36] ! Arc = 6633165.000 (meters)

37] !

38] ! The great circle arc between

39] ! Position at equator ; | Position at N-pole

40] ! Latitude: 0 0O 0.00000" N ;! Latitude: 90 0 0.00000" N

41] ! Longitude: 0 0 0.00000" E ;! Longitude: 0 0 0.00000" E

4% I is 10007.54297 km (6218.398926 miles)

4 !

44] | The great circle arc between

45] | Position at equator ; | Position at N-pole

46] ! Latitude: 0 0 0.00000" N ;! Latitude: 90 0 0.00000" N

47] ! Longitude: 0 0 0.00000" E ;! Longitude: 0 0 0.00000" E

48] ! is 10007.54297 km (6218.398926 miles)

Figure 5.13 Testing the Great Arc Class Interactions

117

5.4 Exercises

1. Referring to Chapter 3, develop OOA and OOD tables for th@eajnetric class, b)Date class, c)
Person class, dStudent class.

2. Develop the graphical representations for the classes in the a) drill study, b) global position study.

3. Use the classes in the GPS study to develop a main program that will read a list (vector) of
Global _Position types and use them to output a square table of great arc distances from one site
to each of the others. That is, the table entry in fqwolumnk gives the arc from sitg to sitek. Such

a table would be symmetric (with zeros along one diagonal) so you may want to give only half of it.

4. Modify the givenClass _Position _Angle to provide a polymorphic interface for a constructor
Position _Angle _ that will accept decimal, integer or no data for the seconds value. Also allow for
the omission of the minutes value.

©2001 J.E. Akin 118

Chapter 6

Inheritance and Polymorphism

6.1 Introduction

As we have seen earlier in our introduction to Oi@Reritanceis a mechanism for deriving a new class

from an oldermase class That is, the base class, sometimes calledstiyger classis supplemented or
selectively altered to create the nderived classinheritance provides a powerful code reuse mechanism
since a hierarchy of related classes can be created that share the same code. A class can be derived from
an existing base class using the module construct illustrated in Fig. 6.1.

We note that the inheritance is invoked by the USE statement. Sometimes an inherited entity (attribute
or member) needs to be slightly amended for the purposes of the new classes. Thus, at times one may
want to selectively bring into the new class only certain entities from the base class. The modifier ONLY
in a USE statement allows one to select the desired entities from the base class as illustrated below in
Fig. 6.2. Itis also common to develop name conflicts when combining entities from one or more related
classes. Thus a rename modifiex;,3s also provided for a USE statement to allow the programmer to
pick a newlocal name for an entity onherited from the base class. The form for that modifier is given in
Fig. 6.3.

Itis logical to extend any or all of the above inheritance mechanisms to produce multiple inheritance.
Multiple Inheritanceallows a derived class to be created by using inheritance from more than a single
base class. While multiple inheritance may at first seem like a panacea for efficient code reuse, experi-
ence has shown that a heavy use of multiple inheritance can result in entity conflicts and be otherwise
counterproductive. Nevertheless it is a useful tool in OOP. In F90 the module form for selective multiple
inheritance would combine the above USE options in a single module as illustrated in Fig. 6.4.

module derived_class_name
use baseclass name
I new attribute declarations, if any

contains

I new member definitions

end module derived.class.name

Figure 6.1 F90 Single Inheritance Form.

©2001 J.E. Akin 119

module derived_class_name
use baseclass name, only: list. of _entities
! new attribute declarations, if any

contains

I new member definitions

end module derived_class_name

Figure 6.2 F90 Selective Single Inheritance Form.

module derived_class_name
use baseclass name, local name => base_entity_name
! new attribute declarations, if any

contains

I new member definitions

end module derived._class.name

Figure 6.3 F90 Single Inheritance Form, with Local Renaming.

module derived_class_name
use baselclass name
use base2class name
use base3class name, only: list. of _entities
use base4class name, local name => base_entity_name

! new attribute declarations, if any

contains

I new member definitions

end module derived.class_name

Figure 6.4 F90 Multiple Selective Inheritance with Renaming.

©2001 J.E. Akin 120

1] module class _Professor ! file: class _Professor.fo0
2 implicit none

3 public :: print, name

4 private :: publs

5 type Professor

6 character (len=20) :: name

7 integer ;2 publs ! publications

8 end type Professor

9] contains

10 function make _Professor (n, p) result (who)

11 character (len=*), optional, intentgn) won

12 integer, optional, intent(in) :: p

13 type (Professor) ;> who ! out
14 who%name =" | set defaults
15 who%publs = 0.0

16 if (present(n)) who%name = n ! construct

17 if (present(p)) who%publs = p

18 end function make _ Professor

19

20 function print (who)

21 type (Professor), intent(in) :: who

22 print *, "My name is ", who%name, &

23 ", and | have ", who%publs, " publications."

24 end function print

25] end module class _ Professor

Figure 6.5 A Professor Class

6.2 Example Applications of Inheritance

6.2.1 The Professor Class

In the introductory examples of OOP in Chapter 3 we introduced the concepts of inheritance and multiple
inheritance by the use of thzate class,Person class, andstudent class. To reinforce those concepts

we will reuse those three classes and will have them be inherited by a Professor class. Acknowledging
the common “publish or perish” aspect of academic life the professor class must keep up with the number
of publications of the professor. The new class is given in Fig. 6.5 along with a small validation program
in Fig. 6.6.

Note that the validation program brings in three different versions of the “print” member (lines 7-9)
and renames two of them to allow a polymorphic print statement (lines 12-14) that selects the proper
member based solely on the class of its argument. Observe that the presisuslass is brought into
themain through the use of theerson class (in line 7). Of course, it is necessary to have an interface
defined for the overloaded member name so that the compiler knows which candidate routines to search
atrun time. This example also serves to remind the reader that Fortranatbesekeywordghat are not
allowed to be used by the programmer. In this case the print function (lines 19, 22, 25) has automatically
replaced the intrinsic print function of Fortran. Most languages, including C++ do not allow one to do
that.

6.2.2 The Employee and Manager Classes

Next we will begin the popular employee-manager classes as examples of common related classes that
demonstrate the use of inheritance. Once again the idea behind encapsulating these data and their as-
sociated functionality is to model a pair of real world entities - an employee and a manager. As we go
through possible relations between these two simple classes it becomes clear that there is no unique way
to establish the classes and how they should interact. We begin with a minimal approach and then work
through two alternate versions to reach the point where an experienced OO programmer might have be-
gun. The firsttmployee class, shown in Fig. 6.7 has a name and pay rate as its attributes. Only the
intrinsic constructor is used within the memisetDataE to concatenate a first name and last name to

form the complete name attribute and to accept the pay rate. To query megaidensieE andgetRate

are provided to extract either of the desired attributes. Finally, mepayéeris provided to compute the

pay earned by an employee. It assumes that an employee is paid by the hour. A simple testing main
program is shown in Fig. 6.8 It simply defines two employe@sp{l andempl2), assigns their names

and pay rates, and then computes and displays their pay based on the respective number of hours worked.

©2001 J.E. Akin 121

1] ! Multiple Inheritance and Polymorphism of the "print" function
2] include ’class _Person.inc’ | also brings in class _Date
3] include ’class _ Student.inc’
4] include ’class _ Professor.inc’
5
6] program main
7 use class _Person ! no changes
8 use class _Student, print _S => print ! renamed to print _S
9 use class _Professor, print _F => print ! renamed to print _F
10 implicit none
11
12] ! |Interface to generic routine, print, for any type argument
13 interface print ! using renamed type dependent functions
14 module procedure print —_Name, print _S, print _F
%g end interface
1; type (Person) :: x; type (Student) :: y; type (Professor) :: z
1
19 x = Person ("Bob"); ! default constructor
20 call print(x); ! print person type
21
22 y = Student ("Tom", 3.47); ! default constructor
23 call print(y); I print student type
24
25 z = Professor ("Ann", 7); ! default constructor
26 call print(z); I print professor type
27 | alternate constructors not used
28] end program main ! Running gives:
29] ! Bob
30] ! My name is Tom, and my G.P.A. is 3.4700000.
31] ! My name is Ann, and | have 7 publications.
Figure 6.6 Bringing Four Classes and Three Functions Together
1] module class _Employee
2] ! The module class _Employee contains both the
3] ! data and functionality of an employee.
4] !
5 implicit none
6 public :: setDatakE, getNameE, payE ! the Functionality
7
8 type Employee | the Data
9 private
10 character(30) :: name
l% real . payRate ; end type Employee
1
13] contains ! inherited internal variables and subprograms
14
15 function setDataE (lastName, firstName, newPayRate) result (E)
16 character(*), intent(in) :: lastName
17 character(*), intent(in) :: firstName
18 real, intent(in) :: newPayRate
19 type (Employee) T = ! employee
20 ! use intrinsic constructor
21 E = Employee((trim(firstName)//* "/ltrim(lastName)),newPayRate)
22 end function setDataE
23
24 function getNameE (Person) result (n)
25 type (Employee), intent(in) :: Person
26 character(30 tn I name
% n = Person % name ; end function getNameE
29 function getRate (Person) result (r)
30 type (Employee), intent(in) :: Person
31 real ar ! rate
32 r = Person % payRate ; end function getRate
33
34 function payE (Person, hoursWorked) result (amount)
35 type (Employee), intent(in) :: Person
36 real, intent(in) :: hoursWorked
37 real :: amount
38 amount = Person % payRate * hoursWorked ; end function payE
39] end module class _Employee

Figure 6.7: First Definition of an Employee Class

Note that bottempll andempl2 are each an instance of a class, and therefore they are objects and thus

distinctly different from a class.

©2001 J.E. Akin 122

program main
I Example use of employees
use class _Employee
type (Employee) empll, empl2

! Set up 1st employee and print out his name and pay
empll = setDatakE ("Jones", "Bill", 25.0)
print *, "Name: ", getNameE (empll)
print *, "Pay: ", payE (empll, 40.0)

OO~ U WN -

10

11 | Set up 2nd employee and print out her name and pay
12 empl2 = setDatakE ("Doe", "Jane", 27.5

13 print *, "Name: ", getNameE (empl2)

14 print *, "Pay: ", payE (empl2, 38.0)

15 end program main ! Running produces;

16 I Name: Bill Jones I Pay: 1000.

17 I Name: Jane Doe I Pay: 1045.

Figure 6.8 First Test of an Employee Class

Next we deal with a manager which Is-A “kind of” employee. One difference is that some managers
may be paid a salary rather than an hourly rate. Thus we havwaahager class inherit the attributes
of the Employee class and add a new logical attribuéSalaried ~ which is true when the manager is
salary based. To support such a case we must add a new msstthdaried which can turn the new
attribute on or off, and a corresponding mempayM that uses thésSalaried flag when computing
the pay. Thelass _Manager module is shown in Fig. 6.9 Note that the construManager _ defaults
to an hourly worker (line 33) and it uses the inherited employee constructor (line 31). Figure 6.10 shows
a test program to validate the manager class (and indirectly the employee class). It defines a salaried
managermgrl, an hourly managengr2, and prints the name and weekly pay for both. (Verify these
weekly pay amounts.)

With these two classes we have mainly used different program names for members that do similar
things in each class (the author’s preference). However, many programmers prefer to use a single member
name for a typical operation, regardless of the class of the operand. We also restricted all the attributes
to private and allowed all the members to peblic . We could use several alternate approaches to
building ourEmployee andManager classes. For example, assume we want a single member name
calledpay to be invoked for an employee, or manager (or executive). Furthermore we will allow the
attributes to bepublic instead ofprivate . Lowering the access restrictions to the attributes makes
it easier to write an alternate program, but it is not a recommended procedure since it breaks the data
hiding concept that has been shown to be important to OO software maintenance and reliability. The
alternateEmployee andManager classes are shown in Figs. 6.11 and 6.12, respectively. Note that
they both have aay member but their arguments are of different classes and their internal calculations
are different. Now we want a validation program that will create both classes of individuals, and use
a single member nameyintPay , to print the proper pay amount from the single member npage
This can be done in different ways. One problem that arises in our plan to reuse the code in the two
alternate class modules is that neither contained a pay printing member. We will need two new routines,
PrintPayEmployee andPrintPayManager , and a generic or polymorphic interface to them. We have
at least three ways to do this. One way is to place the two routines in an external file (or external to main
if in the same file), leave the two class modules unchanged, and hawsithgrogram begin with (or
INCLUDE) an external interface prototype. This first approaci is shown in Fig. 6.13. Note that
the two new external routines must eacle their respective class module.

A second approach would be to have the two new routines become internalrtaithgafter line
30, and occur beforend program . Another change would be that each routine would have to omit its
use statement (such as lines 34 and 41). Why? Because they are now interrzé tand it has already
madeuse of the two classes (in line 2). That approach is shown in Figs. 6.13

A third approach would be the most logical and consistent with OOP principles. It is to make all the
class attributeprivate , place the print members in each respective class, insert a single generic name
interface in each class, and modify tihain program to use the polymorphic name regardless of the class
of the argument it acts upon. The improved version of the classes are given below in Figs. 6.14, 6.15, and
6.16. Observe that generic interfaces fointPay andgetName have been added, but that we could

©2001 J.E. Akin 123

OO~ T WN =

module class _Manager

| Gets class _Employee and add additional functionality
use class _Employee
implicit none
public :: setSalaried, payM
type Manager ! the Data
private
type (Employee) :: Person
integer .1 isSalaried I (or logical)

end type Manager
contains ! inherited internal variables and subprograms

function getEmployee (M) result (E)
type (Manager), intent(in) :: M
type (Employee) "
= M % Person ; end function getEmployee

function getNameM (M) result (n)
type EManager 3 intent(in) :: M

type (Employee K E
character 30 n I name
= getNameE(M % Person) end function getNameM
function Manager _ (lastName, firstName, newPayRate) result (M)
character(*), intent(in N lastName
character(*), intent(in) :: firstName
real, mtent(m) i newPayRate
type EEmponee E I employee
type (Manager M ! manager constructor

E = setDataE (lastName, flrstName newPayRate)
I use intrinsic constructor
M = Manager(E, 0) ! default to no salary
end function Manager _

function setDataM (lastName, firstName, newPayRate) result (M)
characterg*g, mtent?n; ;. lastName

character(*), intent(in) :: firstName

real, intent(in) :: neWPayRate

type (Employee) E I employee
type Manager) M ! manager

E = setDatakE (IastName flrstName newPayRate)
M % Person = E
end function setDataM

subroutine setSalaried (Who, salariedFlag)
type (Manager), intent(inout) :: Who
integer, intent(in) :: saIarledFIag
Who % isSalaried = salariedFlag ; end subroutine setSalaried

function payM (Human, hoursWorked) result (amount)
type (Manager), intent(in) :: Human
real, intent(in) :: hoursWorked
real :: amount, value
value = getRate(getE J)onee(Human))
if (Human % isSalaried == 1 ! (or use logical)
amount = value
else
amount = value * hoursWorked
end if ; end function payM
end module class _Manager

Figure 6.9 A First Declaration of a Manager Class

not do that for a correspondirsgtData ; do you know why? A final improvement will be given as an
assignment.

6.3 Polymorphism

Fortran 90 and 95 do not include the full range of polymorphism abilities that one would like to have in
an object-oriented language. It is expected that the Fortran 2000 standard will add those abilities.

Some of the code “re-use” features can be constructed through the concept of subprogram “tem-

plates,” which will be discussed below. The lack of a standard Alspolymorphism can be overcome in
F90/95 by the use of theELECT CASHeature to define “sub-types” of objects. This approach of sub-
typing programming provides the desired additional functionality, but it is clearly not as easy to change
or extend as an inheritance feature built into the language standard. A short example will be provided.

©2001 J.E. Akin 124

1] program main ! Example use of managers

2 use class _Manager

3 implicit none

4 type (Manager) mgrl, mgr2

5

g ! Set up 1st manager and print out her name and pay

8 mgfrl = setDataM ("Smith", "Kimberly", 1900.0)

8 call setSalaried (mgrl, 1) ! Has a salary

1

11 print *, "Name: ", getNameM (mgrl

12 print *, "Pay: ", payM (mgrl, 40.0

13

14 I Set up 2nd manager and print out his name and pay

15

16 ! mgr2 = setDataM ("Danish", "Tom", 46.5)

1; ! call setSalaried (mgr2, 0) ! Doesn't have a salary

1 ! or

18 mgr2 = Manager _ ("Danish", "Tom", 46.5)

2

21 print *, "Name: ", getNameM (mgr2

22 print *, "Pay: ", payM (mgr2, 40.0

23] end program main I Running produces

24] ! Name: Kimberly Smith I Pay: 1900.

25] | Name: Tom Danish I Pay: 1860.
Figure 6.1Q First Test of a Manager Class

1] module class _Employee ! Alternate

2 implicit none . .

£31 public :: setData, getName, pay ! the Functionality

5 type Emplg ! the Data

6 character(I name

7 real ;1 payRate

8 end type Employee

9

10] contains ! inherited internal variables and subprograms

11

12 subroutine setData (Person, lastName, firstName, newPayRate)

13 type (Employee) :: Person

14 character(* i1 lastName

15 character(* o firstName

16 real . newPayRate

17 Person % name = trim (firstName) // " " /I trim (lastName)

18 Person % payRate = newPayRate

19 end subroutine setData

20

21 function getName (Person)

22 character(30) getName

23 type (Employee) " “Person

24 getName = Person % name

25 end function getName

26

27 function pay (Person hoursWorked)

28 real pay

29 type (Employee) o) Person

30 real :: hoursWorked

31 ay = Person % payRate * hoursWorked

32 end function pay

33] end module class _Employee

Figure 6.11 Alternate Public Access Form of an Employee Class

6.3.1 Templates

One of our goals has been to develop software that can be reused for other applications. There are some
algorithms that are effectively independent of the object type on which they operate. For example, in a
sorting algorithm one often needs to interchangesveap, two objects. A short routine for that purpose
follows:

subroutine swap _integers (X, Y)
implicit none
integer, intent(inout) :: X, y
integer o temp
temp
X

y
end subroutine swap _integers

©2001 J.E. Akin 125

1] module class _Manager ! Alternate

2 use class _Employee, payEmployee => pay ! renamed
3 implicit none

4 public :: setSalaried, payManager

5

6 type Manager ! the Data

7 type (Employee) :: Person

8 integer ;. isSalaried I (or logical)

8 end type Manager

1

1% contains ! inherited internal variables and subprograms

1

13 subroutine setSalaried (Who, salariedFlag)

14 type (Manager) :: Who

15 integer :: salariedFlag

16 Who % isSalaried = salariedFlag

1; end subroutine setSalaried

1

19 function pay (Human, hoursWorked)

20 real i pay

21 type (Manager) :: Human

22 real :: hoursWorked

23

24 if (Human % isSalaried == 1) then ! (or use logical)
25 pay = Human % Person % payRate

26 else

27 pay = Human % Person % payRate * hoursWorked
28 end if

29 end function pay

30] end module class _Manager

Figure 6.12 Alternate Public Access Form of a Manager Class

Observe that in this form it appears necessary to have one version for integer arguments and another for
real arguments. Indeed we might need a different version of the routine for each type of argument that
you may need to swap. A slightly different approach would be to write our swap algorithm as:

subroutine swap _objects (x, y)
implicit none
type EObjectg, intent(inout) :: X, y
type (Object o temp
temp = x
X =y
y = temp
end subroutine swap _objects
which would be a single routine that would work for a@yject , but it has the disadvantage that one
find a way to redefine thebject type for each application of the routine. That would not be an easy
task. (While we will continue with this example with the algorithm in the above forms it should be noted
that the above approaches would not be efficientihdy were very large arrays or derived type objects.
In that case we would modify the algorithm slightly to employ pointers to the large data items and simply
swap the pointers for a significant increase in efficiency.)
Consider ways that we might be able to generalize the above routines so that they could accept and
swap any specific type of arguments. For example, the first two versions could be re-written in a so called
template form as:

subroutine swap _Template$ (x, y)
implicit none
Template$, intent(inout) :: X, y
Template$;. temp
temp = x
X =y
y = temp
end subroutine swap _Template$
In the above template the dollar sign ($) was includes in the “wild card” because while it is a valid member
of the F90 character set it is not a valid character for inclusion in the name of a variable, derived type,
function, module, or subroutine. In other words, a template in the illustrated form would not compile, but
such a name could serve as a reminder that its purpose is to produce a code that can be compiled after the
“wild card” substitutions have been made.
With this type of template it would be very easy to use a modern text editor to do a global substitution
of any one of the intrinsic typesharacter, complex, double precision, integer, logi-

cal, orreal forthe “wild card” keywordTemplate$ to produce a source code to swap any or all of

©2001 J.E. Akin 126

1] program main ! Alternate employee and manager classes
2 use class _Manager ! and thus Employee

3 implicit none

4 ! supply interface for external code not in classes
5 interface PrintPay ! For TYPE dependent arguments

6 subroutine PrintPayManager (Human, hoursWorked)
7 use class _Manager

8 type (Manager) :: Human

9 real :: hoursWorked

10 end subroutine

11 subroutine PrintPayEmployee (Person, hoursWorked)
12 use class _Employee

13 type (Employee) :: Person

14 real :: hoursWorked

15 end subroutine

16 end interface

17

lg type (Employee) empl ; type (Manager) mgr

1

20 | Set up an employee and print out his name and pay
%% call setData (empl, "Burke", "John", 25.0)

23 print *, "Name: ", getName (empl)

24 call PrintPay (empl, 40.0)

25

26 | Set up a manager and print out her name and pay
27 call setbata (mgr % Person, "Kovacs", "Jan", 1200.0)
%g call setSalaried (mgr, 1) ! Has a salary

30 print *, "Name: ", getName (mgr % Person)

31 call PrintPay (mgr, 40.0)

%% end program

34 subroutine PrintPayEmployee (Person, hoursWorked)
35 use class _Employee

36 type (Employee) :: Person

37 real :: hoursWorked

38 print *, "Pay: ", pay (Person, hoursworked)

38 end subroutine

4

41 subroutine PrintPayManager (Human, hoursWorked)
42 use class _Manager

43 type (Manager) :: Human

44 real :: hoursWorked

45 print *, "Pay: ", pay (Human , hoursworked)
46 end subroutine

47] ! Running produces;

48] ! Name: John Burke

49] | Pay: 1000

50] ! Name: Jan Kovacs

51] ! Pay: 1200.

Figure 6.13 Testing the Alternate Employee and Manager Classes

the intrinsic data types. There would be no need to keep up with all the different routine names if we
placed all of them in a single module and also created a geinariface to them such as:

module swap _library

implicit none

interface swap ! the generic name
module procedure swap _character, swap _complex
module procedure swap _double precision, swap _integer
module procedure swap _logical, swap _real

end interface

contains
subroutine swap _characters (X, V)
end subroutine swap _characters

subroutine swap _ . .

end module swap _library

The use of a text editor to make such substitutions is not very elegant and we expect that there may
be a better way to pursue the concept of developing a reuseable software template. The concept of a text
editor substitution also fails when we go to the next logical step and try to use a derived type argument
instead of any of the intrinsic data types. For example, if we were to replace the “wild card” with our

previoustype (chemical _element) thatwould create:
subroutine swap _type (chemical _element) (x.y)
implicit none

©2001 J.E. Akin 127

1 module class _Employee ! the base class
2 implicit none | strong lyging
3 private :: PrintPayEmployee, payE ! private members
4 type Employee ! the Data
5 private ! all attributes private
6 character(30) :: name
g real :: payRate ; end type Employee
9 interface PrintPay ! a polymorphic member
10 module procedure PrintPayEmployee ; end interface
11 interface getName I a polymorphic member
12 module procedure getNameE ; end interface
13 I NOTE: can not have polymorphic setData. Why ?
14
15 contains ! inherited internal variables and subprograms
16
17 function setDataE (lastName, firstName, newPayRate) result (E)
18 character(*), intent(in) :: lastName
19 character(*), intent(in) :: firstName
20 real, intent(in) :: newPayRate I amount per period
21 type (Employee) = I employee
22 ! use intrinsic constructor
23 E = Employee((trim(firstName)//* "//trim(lastName)),newPayRate)
24 end function setDataE
25
26 function getNameE (Person) result (n)
27 type (Employee), intent(in) :: Person
28 character(30) on I name
29 n = Person % name ; end function getNameE
30
31 function getRate (Person) result (r)
32 type (Employee), intent(in) :: Person
33 real ar ! rate of pay
24 r = Person % payRate ; end function getRate
5
36 function payE (Person, hoursWorked) result (amount)
37 type (Employee), intent(in) :: Person
38 real, intent(in) :: hoursWorked
39 real :: amount
40 amount = Person % payRate * hoursWorked ; end function payE
41
42 subroutine PrintPayEmployee (Person, hoursWorked)
43 type (Employee) :: Person
44 real :: hoursWorked
45 print *, "Pay: ", payE (Person, hoursworked)
46 end subroutine
47 end module class _Employee
Figure 6.14 A Better Private Access Form of an Employee Class
1 module class _Manager ! the derived class
2 ! Get class _Employee, add additional attribute & members
3 use class _Employee ! inherited base class
4 implicit none I strong typing
5 private :: PrintPayManager, payM, getNameM ! private members
6
7 type Manager ! the Data
8 private ! all attributes private
9 type (Employee) :: Person
10 integer i1 isSalaried I 1 if true (or use logical)
1% end type Manager
1
13 interface PrintPay I a polymorphic member
14 module procedure PrintPayManager ; end interface
15 interface getName I a polymorphic member
16 module procedure getNameM ; end interface

Fig. 6.15: A Better Private Access Form of a Manager Class (continued)

type (chemical _element), intent (inout)::x,y
type (chemical _element) temp
temp = x
X =y
y = temp
end subroutine swap _type (chemical _element)

This would fail to compile because it violates the syntax for a valid function or subroutine name, as well
as the end function or end subroutine syntax. Except for the first and last line syntax errors this would be
a valid code. To correct the problem we simply need to add a little logic and omit the chatgoters

©2001 J.E. Akin 128

17

18 contains ! inherited internal variables and subprograms

19

20 function getEmployee (M) result (E)

21 type EManager , intent(in) :: M

22 type (Employee "

%3 E = M %Person ; end function getEmployee

4

25 function getNameM (M) result (n)

26 type (Manager), intent(in) :: M

27 type (Employee) B E

28 character 30 ! name

29 n = getNameE(M % Person) end function getNameM

30

31 function Manager _ (lastName, firstName, newPayRate) result (M)
32 character(*), intent(in " lastName

33 character(*), intent(in firstName

34 real, mtent(rn) i newPayRate

35 type EEmponee E | employee

36 type (Manager M I manager constructed
37 E = setDatakE (lastName, frrstName newPayRate)

38 ! use intrinsic constructor
39 M = Manager(E, 0) ! default to hourly

40 end function Manager _

41

42 function setDataM (lastName, firstName, newPayRate) result (M)
43 character(*), intent(in) :: lastName

44 character(*), intent(in) :: firstName

45 real, intent(in) :: neWPayRate ! hourly OR weekly
46 type (Employee) E I employee

47 type (Manager) M I manager constructed
48 E = setDatak (IastName flrstName neWPayRate)

49 M % Person = E ; M % isSalaried = I default to hourly
g(l) end function setDataM

52 subroutine setSalaried (Who, saIarredFIag) ! O=hourly, 1=weekly
53 type (Manager), |ntent(|nout)

54 integer, intent(in) :: saIarledFIag 10 OR 1

52 Who % isSalaried = salariedFlag ; end subroutine setSalaried
5

57 function payM (Human, hoursWorked) result (amount)

58 type (Manager), mtent(rn) ;2 Human

59 real, intent(in) :: hoursWorked

20 real | (| (amour)ﬂ) value

1 value = getRate(getEmployee(Human

62 if (Human % |sSaIar|e(P =1)

63 amount = value ' for weekly person

64 else

65 amount = value * hoursWorked ! for hourly person

66 end if ; end function payM

67

68 subroutine PrintPayManager (Human, hoursWorked)

69 type (Manager) :: Human

70 real :: hoursWorked

71 print *, "Pay: ", payM (Human , hoursworked)

72 end subroutine

73 end module class _Manager

Figure 6.15 A Better Private Access Form of a Manager Class

() when we create a function, module, or subroutine name that is based on a derived type data entity.
Then we obtain

subroutine swap _chemical _element (x,y)
implicit none
type (chemical _element), intent (inout)::x,y
type (chemical _element temp
temp =
X =y
y = temp
end subroutine swap _chemical _element

which yields a completely valid routine.

Unfortunately, text editors do not offer us such logic capabilities. However, as we have seen, high
level programming languages like C++ and F90 do have those abilities. At this point you should be able
to envision writing gpre-processor ~ program that would accept a file of template routines, replace the
template “wildcard” words with the desired generic forms to produce a moduieaaler file con-
taining the expanded source files that can then be brought into the desired programindtindan or
use statement. The C++ language includes a template pre-processor to expand template files as needed.

©2001 J.E. Akin 129

1] program main ! Final employee and manager classes

2 use class _Manager ! and thus class _Employee

3 implicit none

4

5 type (Employee) empl ; type (Manager) magr

6

7 I Set up a hourly employee and Erint out his name and pay
8 empl = setDataE ("Burke", "John", 25.0)

10 print *, "Name: ", getName (empl)

1% call PrintPay (empl, 40.0) I polymorphic

1

13 | Set up a weekly manager and print out her name and pay
14 mg?r = setDataM ("Kovacs", "Jan", 1200.0

15 call setSalaried (mgr, 1) ! rate is weekly

16

17 print *, “"Name: ", getName (mgr))

18 call PrintPay (mgr, 40.0) I polymorphic

19] end program ! Running produces;
20] ! Name: John Burke

211 ! Pay: 1000.

22] ! Name: Jan Kovacs

23] ! Pay: 1200.

Figure 6.16 Testing the Better Employee-Manager Forms

Some programmers criticize F90/95 for not offering this ability as part of the standard. A few C++ pro-
grammers criticize templates and advise against their use. Regardless of the merits of including template
pre-processors in a language standard it should be clear that it is desirable to plan software for its efficient
reuse.

With F90 if one wants to take advantage of the concepts of templates then the only choices are to carry
out a little text editing or develop a pre-processor with the outlined capabilities. The former is clearly
the simplest and for many projects may take less time than developing such a template pre-processor.
However, if one makes the time investment to produce a template pre-processor one would have a tool
that could be applied to basically any coding project.

6.3.2 Subtyping Objects (Dynamic Dispatching)

One polymorphic feature missing from the Fortran 90 standard (but expected in Fortran 2000) that is
common to most object oriented languages is called run-time polymorphism or dynamic dispatching. In
the C++ language this ability is introduced in the so-called “virtual function.” To emulate this ability

is quite straightforward in F90 but is not elegant since it usually requires a group of if-elseif statements
or other selection processes. It is only tedious if the inheritance hierarchy contains many unmodified
subroutines and functions. The importance of the lack of a standardized dynamic dispatching depends on
the problem domain to which it must be applied. For several applications demonstrated in the literature
the alternate use of subtyping has worked quite well and resulted in programs that have been shown to
run several times faster than equivalent C++ versions.

We implement dynamic dispatching in F90 by a process often called subtyping. Two features must be
constructed to do this. First, a pointer object, which can point to any subtype member in an inheritance
hierarchy, must be developed. Second, an if-elseif or other selection method is developed to serve as a
dispatch mechanism to select the unique appropriate procedure to be executed based on the actual class
referenced in the controlling pointer object. This subtyping process is also referred to as implementing
a polymorphic class. Of course, the details of the actual dispatching process can be hidden from the
procedures that utilize the polymorphic class.

This process will be illustrated buy creating a specific polymorphic class, called
Is_A _Member_Class, which has polymorphic procedures named new, assign, and display. They will
construct a new instance of the object, assign it a value, and list its components. The minimum example
of such a process requires two members and is easily extended to any number of member classes. We
begin by defining each of the subtype classes of interest.

The first is a class, Membet _ Class, which has two real components and the encapsulated func-
tionality to construct a new instance and another to accept a pointer to such a subtype and display related
information. It is shown in Fig. 6.17. The next class, Memb2r Class, has three components: two
reals and one of type Memhet. It has the same sort of functionality, but clearly must act on more

©2001 J.E. Akin 130

1] Module Member _1_Class

2 implicit none

3 type member _1

4 real :: real _1, real _2

5 end type member _1

6

; contains

9 subroutine new _member_1 (member, a, b)
10 real, intent(in) :: a, b

11 type (member _1) : member

12 member%real _1 = a ; member%real _2 = b
%i end subroutine new _member_1

15 subroutine display _memh_1 (pt _to _memh_1, c)
16 type (member _1), pointer :: pt _to _memh_1
17 character(len=1), intent(in) :: c

18 print *, 'display _memh_1’, ¢

1(9) end subroutine display _memh_1
2

21] End Module Member _1_Class

Figure 6.17 Defining Subtype 1

1] Module Member _2_Class

2 Use Member _1_class

3 implicit none

4 type member _2

5 type (member _1) r _1_2

6 real :: real _3, real _4

7 end type member _2

8

9] contains

10

11 subroutine new _member_2 (member, a, b, c, d)
12 real, intent(in) :: a, b, c, d

13 type (member _2) : member

14 call new _member_1 (member%r _1_2, a, b)
15 member%real _3 = c ; member%real _4 = d
16 end subroutine new _member_2

17

18 subroutine display —_memh_2 (pt _to _memh_2, c)
19 type (member _2), pointer :: pt _to _memh_2
20 character(len=1), intent(in) :: c

21 print *, 'display _memh_2 ’, ¢

22 end subroutine display _memh_2

23

24] End Module Member _2_Class

Figure 6.18 Defining Subtype 2

components. It has also inherited the functionally from the MemberClass; as displayed in Fig. 6.18.

The polymorphic class is called the_l& _Member_ Class and is shown in Fig. 6.19. It includes all
of the encapsulated data and function’s of the above two subtypes by including their use statements. The
necessary pointer object is defined as anAs Member type that has a unique pointer for each subtype
member (two in this case). It also defines a polymorphic interface to each of the common procedures to
be applied to the various subtype objects. In the polymorphic function assign the dispatching is done very
simply. First, all pointers to the family of subtypes are nullified, and then the unique pointer component
to the subtype of interest is set to point to the desired member. The dispatching process for the display
procedure is different. It requires an if-elseif construct that contains calls to all of the possible subtype
members (two here) and a failsafe default state to abort the process or undertake the necessary exception
handling. Since all but one of the subtype pointer objects have been nullified it employs the associated
intrinsic function to select the one, and only, procedure to call and passes the pointer object on to that
procedure. The validation of this dynamic dispatching through a polymorphic class is shown in Fig. 6.20.
There a target is declared for reach possible subtype and then each of them is constructed and sent on
to the other polymorphic functions. The results clearly show that different display procedures were used
depending on the class of object supplied as an argument. It is expected that the new Fortran 2000
standard will allow such dynamic dispatching in a much simpler fashion.

©2001 J.E. Akin 131

1] Module Is _A_Member_Class

2] Use Member _1_Class ; Use Member _2_Class

3 implicit none

4

5 type Is _A_Member

6 private

7 type Emember _13, pointer :: pt _to _memh_1
8 type (member _2), pointer :: pt _to _memh_2
8 end type Is _A_Member

1

11 interface new

12 module procedure new _member_1

13 module procedure new _member_2

14 end interface

15

16 interface assign

17 module procedure assign _memh_1

18 module procedure assign _memh_2

19 end interface

20

21 interface display

22 module procedure display _memh_1

23 module procedure display _memh_2

24 end interface

25

26] contains

27

28 subroutine assign _memh_1 (Family, member)

29 type gmember _1), target, intent(in) : member

30 type (Is _A_Member), intent(out) :: Family
31 call nullify —Is —_A_Member (Family)

32 Family%pt _to _memh_1 => member

33 end subroutine assign _memh_1

34

35 subroutine assign _memh_2 (Family, member)

36 type gmember _2), target, intent(in) : member

37 type (Is _A_Member), intent(out) :: Family
38 call nullify —lIs _A_Member (Family)

39 Family%pt _to _memh_2 => member

40 end subroutine assign _memh_2

41

42 subroutine nullify _Is _A_Member (Family)

43 type (Is —_A_Member), intent(inout) :: Family

44 nullify (Family%pt _to _memh_1

45 nullify (Family%pt _to _memh_2

46 end subroutine nullify —_Is _A_Member

47

48 subroutine display _members (A _Member, c)

49 type (Is _A_Member), intent(in) :: A _Member
50 character(len=1), intent(in) :: c

51

52 | select the proper member

53 if J)associated (A —Member%pt_to _memh_1)) then
54 call display (A _Member%pt_to _memh_1, c)
55 else if (associated (A _Member%pt_to _memh_2)) then
56 call display (A _Member%pt_to _memh_2, ¢)
57 else ! default case

58 stop 'Error, no member defined in Is _A_Member_Class’
59 end i

60 end subroutine display _members

61] End Module Is _A_Member_Class

Figure 6.19 Combining Subtypes in an 1A Class

©2001 J.E. Akin

132

1] program main

2] use Is _A_Member_Class

3 implicit none

4

5 type (Is _A_Member) 1 generic _member
6 type (member _13, target :: pt _to _memhb_1
7 type (member _2), target :: pt _to _memh_2
g character(len=1) :: c

10 c='A

11 call new (pt _to _memh_1, 1.0, 2.0)

12 call assign (generic _member, pt _to _memh_1)
%2 call display _members (generic _member, c)
15 c="'B

16 call new (pt _to _memhb_2, 1.0, 2.0, 3.0, 4.0)
17 call assign (generic _member, pt _to _memh_2)
18 call display _members (generic _member, c)
19

20] end program main

21] ! running gives

22] ! display _memb_1 A

23] ! display _memh_2 B

Figure 6.2Q Testing the Is A Subtypes

6.4 Exercises

1. Write a main program that will use the Class and Class Y, given below, to invoke each of the f(v)
routines and assign a value of 66 to the integer component in X, and 44 to the integer componentin Y.
(Solution given.)

module class _X
public = f
type X _; integer a; end type X _
contains ! functionality
subroutine f(v); type (X _), intent(in) :: v
print *"X _ f() executing"; end subroutine
end module class _X

module class _Y
use class _X, X _f => f | renamed

public :: f
type Y _; integer a; end type Y ~ _ ! dominates X _ a
contains I functionality, overrides X — f(
subroutine f(v); type (Y _), intent(in) :: v
print *"Y _ f() executing"; end subroutine

end module class _Y

2. Create the generic interface that would allow a single constructor rrosigpn _Angle _, to be

used for all the constructors given in the previous chapter for the Btasiton _ Angle . Note that this
is possible because they all had unique argument signatures. Also providensaimewrogram to test
this polymorphic version.

3. Modify the lastManager class by deleting the membsgtDataM and replace its appearance in the

last main with an existing constructor (but not used) in that class. Also provide a geswtbata
interface in the clasEmployee as a nicer name and to allow for other employees, like executives, that
may have different kinds of attributes that may need to be set in the future. Explain why we could not use
setDataM in the genericetData .

4. The final membesetDataE in Employee is actually a constructor and the name is misleading since
it does not just set data values, it also builds the name. ResatetaE to the constructor notation
Employee _ and provide a new member Employee calledsetRateE that only sets the employee pay
rate.

©2001 J.E. Akin 133

134

Chapter 7

OO Data Structures

7.1 Data Structures

We have seen that F90 has a very strong intrinsic base for supporting the use of subscripted arrays.
Fortran arrays can contain intrinsic data types as well as user defined types (i.e., ADT’s). One can not
directly have an array of pointers but you are allowed to have an array contain defined types that are
pointers or that have components that are pointers. Arrays offer an efficient way to contain information
and to insert and extract information. However, there are many times when creating an efficient algorithm
dictates that we use some specialized storage methodntainer and a set of operations to act with that
storage mode. The storage representation and the set of operations that are allowed for it are known as a
data structure How you store and retrieve an item from a container is often independent of the nature of
the item itself. Thus, different instances of a data structure may produce containers for different types of
objects. Data structures have the potential for a large amount of code reuse, which is a basic goal of OOP
methods. In the following sections we will consider some of the more commonly used containers.

7.2 Stacks

A stack is a data structure where access is restricted to the last inserted object. It is referrdddtias a
first-out (LIFO) container. In other words, a stack is a container to which elements may only be inserted
or removed at one end of the container, calledttipeof the stack. It behaves much like a pile of dinner
plates. You can place a new element on the pile (widely knowrpash, remove the top element from
the pile (widely known as pop), and identify the element on the top of the pile. You can also have the
general concept of an empty pile, and possibly a full pile if it is associated with some type of restrictive
container. Since at this point we only know about using arrays as containers we will construct a stack
container by using an array.

Assume that we have defined the attributes of the “Object” that is to use our container by building a
module calledbbject _type . Then we could declare the array implementation of a stack type to be:

module stack _type
use object _type ! to define objects in the stack
implicit none

integer, parameter :: limit = 999 ! stack size limit

type stack

private
integer o size | size of array
integer o top ! top of stack
type (Object) :: a(limit) I stack items array

end type stack
end module stack _type

©2001 J.E. Akin 135

The interface contract to develop one such stack support system (or ADT) is given as:

module stack _of _objects
implicit none
public :: stack, push _on_Stack, pop _from _Stack, &
is _Stack _Empty, is _Stack _Full

interface ! for a class _Stack contract

function make _Stack (n) result (s) I constructor
use stack _type ! to define stack structure
integer, optional :: n | size of stack
éype (stack) s ! the new stack
end function make _ Stack

subroutine Eush —on_Stack (s, item) ! push item on top of stack
use stack _type | for stack structure
type (stack), intent(inout) :: s
éype (Object), intent(in) i item

end subroutine push _on _Stack

function po _from _Stack (s) result (item) ! pop item from top
use stack _type I for stack structure
type Esta_ck), intent(inout) :: s]
(t_}/pe Obiject) o item

end function pop _from _Stack

function is _Stack _Empty (s) result (b) ! test stack
use stack _type | for stack structure
type ﬁstack), intent(in) :: s
logical i

end function is _Stack _Empty

function is _Stack _Full (s) result (b) ! test stack
use stack _type | for stack structure
type ﬁstack), intent(in) :: s
logica "

end function is _Stack _Full

end interface)
end module stack _of _objects

In the interface we see that some of the member servises$tack _Empty andis _Stack _Full)
are independent of the contained objects. Otheys (from _Stack andpush _on _Stack) explicitly
depend on the Object utilizing the container. Of course, the constructor rffaéee_Stack) always
indirectly relates to the Object being contained in the array. The full detailSefca class are givenin
Fig. 7.1.

For a specific implementation test we will simply utilize objects that have a single integer attribute.
That is, we define the object of interest by a code segment like:

module object _type
type Object
integer :: data ; end type ! one integer attribute

end module object _type
Obviously, there are many other types of objects that one may want to create and place in a container like
a stack. At the present one would have to edit the above segment to define all the attributes of the object.
(Begin to think about how you might seek to automate such a process.) Thstaew class is tested
in Fig. 7.2, while a history of the example stack is sketched in Fig. 7.3. The only part of that code that
depends on a specific object is in line 7 where the (public) intrinsic construib@@est , was utilized
rather that some more general constructor,Glajgct _

In Fig. 7.1 note that we have used an alternate syntax and specified the type of function result (logical,
Object, or stack) as a prefix to the function name (lines 16, 28, 36, 40). The author thinks that the form
used in the interface contract is easier to read and understand since it requires an extra line of code,
however some programmers prefer the condensed style of Fig. 7.1. Later we will examine an alternate
implementation of a stack by using a linked list.

The stack implementation shown here is not complete. For example, some programmers like to in-
clude a member, sashow _Stack _top , to display the top element on the container without removing it
from the stack. Also we need to be concerned apaiconditionghat need to be satisfied for a member
and may require that we throw an exception message. You can not pop an item off of an empty stack, nor
can you push an item onto the top of a full stack. Only the member from _Stack does such pre-
condition checking in the sample code. Note that memisersStack _Empty andis _Stack _Full

©2001 J.E. Akin 136

are calledaccessorsas would beshow _Stack _top , since they query the container but do not change

it.

=
QOIS WN -

[e ey
oUbhwNE

module class _Stack
implicit none
use exceptions ! to warn of errors
use object _type
public :: stack, push _on _Stack, pop _from _Stack, &

is _Stack _Empty, is _Stack _Full
integer, parameter :: limit = 999 ! stack size limit

type stack
private
integer i size | size of arra
integer @ top ! top of stac
OItype (Object) :: a(limit) | stack items array
en e

d 1yp . .
contains ! encapsulated functionality

type (stack) function make _Stack (n) result (s) ! constructor
integer, optional :: n ! size of stack i
s%size = limit ; if (present (n)) s%size = n

s%top = 0 ! object array not initialized
end function make _ Stack
subroutine push _on_Stack (s, item) ! push item on top of stack

type gstack), intent§inout) DS

type (Object), intent(in) o item)
so%top = s%top + 1 ; s%a(s%top) = item
end subroutine pus _on _Stack
type (Object) function pop _from _Stack (s) result (item) ! off top

type (stack), intent(inout) :: s
if (s%top < 1) then

| call exception ("pop _from _Stack","stack is empty")
else
item = s%a(s%top) ; s%top = s%top - 1
end if ; end function pop _from _Stack
logical function is _Stack _Empty (s) result (b)
type (stack), intent(in) :: s
b = (s%top == 0) ; end function is _Stack _Empty
logical function is ~_ _Stack _Full (s) result (b)
type (stack), intent(in) :: s
b = (s%top == s%size) ; end function is _Stack _Full
end module class _ Stack

Figure 7.1 A Typical Stack Class

©2001 J.E. Akin 137

1] include ’class _ Stack.f’ ! previous figure

2] program main

3] use class _Stack

4] implicit none

5 type Estack) T b i)

6 type (object) :: value, four, five, six

7

g four = Object(4) ; five = Object(5) ; six = Object(6) ! initialize

10 b = make _ Stack(3) ! prlvate constructor
ﬁ print *, is _Stack _Empty(b), is _Stack _Full(b) ' b = [], empty
13 call push _on _Stack (b, four) I'b = [4]

14 call push _on _Stack (b, five) I'b = [54]

15 call push _on _Stack (b, six) ! b = [6,5,4], full
16 print * is _Stack _Empty(b), is _Stack _Fulilb) ' F T

17

18 value = pop _from _Stack (b) ; prlnt * value ! = [5,4]

%(9) print *, is _Stack _Empty(b), _ Stack _FuII(b) 'FF

21 value = pop _from _Stack (b) ; prlnt * value ! b = [4]

22 print *, is _Stack _Empty(b), _ Stack _Full(b) 'FF

23

24 value = pop _from _Stack (b) ; print * value I'b =[], empty

25 print *, is _Stack _Empty(b), is _Stack _Fulllb) ! T F

26

27 value = pop _from _Stack (b) ! nothing to pop
28 end program main ! running gives:

29 'TF IT'FT

30 I 6 'F F

31 I'5 'FF

32 1 4 'TF

33 I Exception occurred in subprogram pop _from _Stack

34 I With message: stack is empty

Full 2 F
Empty ? T
Error ? N

Stack: | |
|
[

(Line) 9

a) Stack

©2001 J.E. Akin

Figure 7.2 Testing a Stack of Objects

F F T F F F F
F F F F F T T
N N N N N N Y
[4 151 161 51 14 11
[T e
[N

12 13 14 17 20 23 26

Figure 7.3 Steps in the Stack Testing

Front <---- A B C D E<--- Rear

b) Queue

Figure 7.4 Simple Containers

138

7.3 Queues

A comparison of a stack and another simple containepleue is given in Fig. 7.4. Its name queue
comes from the British word which means waiting in a line for service. A queue is a container into which
elements may be inserted at one end, calledebe and leave only from the other end, called frant.

The first element in the queue expects to be the first serviced and, thus, be the first out of line. A queue
is afirst-in first-out(FIFO) container system. In planning our first queue container we will again make
use of an array of objects. Doing so one quickly finds that you are much less likely to encounter a full
queue if it is stored as a so-called fixed circular array with a totg) ofize _Limit storage slots. At

this point we define the structure of our queue to be:

module Queue _type
I A queue stored as a so-called fixed circular array with a total
I of _Size _Limit storage slots; requires remainder function, mod.
! version 1, i.e., without allocatable arrays and pointers)
use object _type ! to define objects in the Container

implicit none

integer, parameter :: Q _Size _Limit = 999

type Queue

private

integer . head ! index of first element
integer .o tail ! index of last element
integer i length] 1 size of used storage
type (Object) :: store (Q _Size _Limit) ! a circular array

end type Queue
end module Queue _type

An interface contract that will allow us to build a typical queue is:

module Queue _of _Objects

implicit none
public :: Queue, Add _to _Q, Create _Q, Get _Front _of _Q, Is _Q_Empty,&
Is _Q_Full, Get _Length _of _Q, Remove_from _Q
interface ! for a class _Queue contract
subroutine Add _to _Q (Q, item) | add to tail of queue
use Queue _type | for Queue structure
type (Queue), intent(inout) :: Q
type (Object), intent(in) i item ; end Subroutine Add _to _Q
function Create —Q (N) result (Q) ! manual constructor
use Queue _type) I for Queue structure
integer, intent(in) : N | size of the new array
type (Queue) T Q5 end function Create _Q

function Get _Capacity _of _Q (Q) result (item)
use Queue _type I for Queue structure
type (Queue), intent(in) :: Q

type (Object) . item ; end function Get _Capacity _of _Q
function Get _Front _of _Q (Q) result (item)

use Queue _type I for Queue structure

type (Queue), intent(in) :: Q

type (Object) - item ; end function Get _Front _of _Q
function Is _Q_Empty (Q) result(B)

use Queue _type I for Queue structure

type (Queue), intent(in) :: Q]

logical B ; end function Is _Q_Empty
function Is _Q_Full (Q) result(B)

use Queue _type I for Queue structure

type ﬁQueue), intent(in) :: Q]

logical B ; end function Is —Q_Full
function Get _Length _of _Q (Q) result (N)

use Queue _type I for Queue structure

type (Queue), intent(in) :: Q)

integer N ; end function Get _Length _of _Q

subroutine Remove _from _Q (Q) ! remove from head of queue

use Queue _type I for Queue structure

type (Queue), intent(inout) :: Q; end subroutine Remove _from _Q

end interface)
end module Queue _of _Objects

©?2001 J.E. Akin 139

For a specific version we provide full details for objects containing an integer in Fig. 7.5, and test and
display the validity of the implementation in Fig. 7.6, where again the objects are taken to be integers
(lines 15, 19, 20).

O©O~N®OTLAWN -

module class _Queue I file: class _Queue.f90

! A queue stored as a so-called fixed circular array with a total of
! Q _Size _Limit storage slots; requires remainder function, mod.
! (i.e., without allocatable arrays and pointers)

use exceptions ! inherit exception handler
implicit none
public :: Queue, Add _to _Q, Create _Q, Get _Front _of _Q
Is _Q_Full, Get _Length _of _Q, Remove_from
integer, parameter :: Q _Size _Limit = 3
type Queue
private
integer :: head ! index of first element
integer :: tail ! index of last element
integer = length] ! size of used storage
integer :: store (Q _Size _Limit) ! a circular array of elements
end type Queue
contains I member functionality
Subroutine Add to _Q (Q |tem) | add to tail of queue
type (Queue), mtentélnout)
integer, intent(in) o item
if (Is _Q_FuII(Q)) call exception ("Add _to —_Q""full Q")
Q%store (Q%tail) = item
Q%tail =1 + mod (Q%tail, Q _Size _Limit)
Q%length = Q%length + 1 ; end Subroutine Add _to _Q
type (Queue) function Create —_Q (N) result (Q) ! manual constructor
integer, intent(in) :: N ! size of the new array
integer ;> k! implied loop
if (N > Q _Size _Limit caII exception("Create _Q""increase size")
Q = Queue (1, 1, 0, (/ (O, N) 1) I intrinsic constructor
end function Create —
integer function Get ~~ _Capacity _of _Q (Q) result (item)
type (Queue), intent(in) :: Q
item = Q _size _Limit - Q%length ; end function Get _ Capacity
integer function Get _Front _of _Q (Q) result (item)
type (Queue), intent(in) :: Q
if (Is _Q_Empty(Q)) call exception("Get _Front _of _Q""em
item = Q%store (Q%head) ; end function Get _Front _of _Q
logical function Is _Q_Empty (Q) result(B)
type (Queue), intent(in) :: Q
= (Q%length == 0) ; end function Is —_Q_Empty
logical function Is ~ —Q_Full (Q) result(B)
type (Queue), intent(in) :: Q
B = (Q%length == _Size _Limit) ; end function Is _Q_Full
integer function Get ~~ _Length _of _Q (Q) result (N)
type (Queue), intent(in) ::]
N = Q%length ; end function Get _Length _of _Q
subroutine Remove _from _Q (Q) ! remove from head of queue
type (Queue), intent(inout) :: Q
if (Is _Q_Empty(Q) call exception("Remove _from _Q","empty Q"
Q%head = 1 + mod (Q%head, Q _Size _Limit)
Q%length = Q%length - 1 ; end subroutine Remove _from _Q
end module class —Queue ! file: class —Queue. f

Figure 7.5 A Typical Queue Class

©2001 J.E. Akin 140

1] program main

2 use class _Queue ! inherit its methods & class global constants

3 implicit none

4

5 type (Queue) :: C, B ! not used, used

6 integer :: value limit = 3 I work items

7

8 C = Create _Q (limit) ! private constructor

9 print *, "Length of C =" _Length _of _Q (C)

10 print *, "Capacity of C = ", Get _Capacity _of _Q (C)

ﬁ print *, "C empty? full? ", is _Q_Empty (C), is _Q_Full (C) !
13 B = Create _Q (3) | private constructor

14 print *, "B empty? full? ", is _Q_Empty (B), is _Q_Full (B) !
15

16 cal Add _to _Q (B 4); print *, "B = []

17 print *, "Length of B = " Get _Length B)

18 print * "B empty? full? " s _Q_Empty (B) —_Q_Full (B) !
19

20 call Add _to _Q (B, 5); print *, " B = [4,5]"

21 cal Add _to _Q (B, 6); print *, " B = 456] full”

22 print *, "Length of B = ", Get _Length _of _Q (B)

23 print *, "B empty? full? ", is _Q_Empty (B), _Q_Full (B) !
%451 print *, "Capacity of B = ", Get _ Capacity _of _Q (B)

%g value = Get _Front _of _Q (B); print *, "Front Q value = ", value
28 call Remove _from Q (B) print *, “Removing from B"

29 print *, "Length of B = _Length _of _ B)

30 print *, "B empty? full? ", —Q_Empty (B), _Q_Full (B) !
31 value = Get _Front _of _Q (B); print *, Front Q value =", value
32

33 call Remove _from _Q (B); print *, "Removing from B"

34 print *, "Length of B = ", Get Length _of _ (B)

35 print *, "B empty? full? ", is _Q_Empty (B), —_Q_Full (B) !
36

37 call Remove _from -Q (B) print *, "Removing from B"

38 print *, "Length of B = _Length _of _ B)

39 print * "B empty? full? " is _Q_Empty (B), is _Q_Full (B) !
40

41 print *, "Removing from B"; call Remove _from _Q (B)

42 call exception _status

43] end program main ! running gives:

441 | Length of C = 0 I Capacity of C = 3 I C empty? full? T, F
451 | B empty? full? T, F

46] | B = [4] I Length of B = 1 I B empty? full? F, F
471 | B = [4,5]

48] ! B = 4,5,6]f, full ! Length of B = 3 ' B empty? full? F, T

49] | Capacity of B = 0 ! Front Q value = 4 ! Removing from B

50] ! Length of B = 2 ! B empty? full? F, F ! Front Q value = 5

51] ! Removing from B ! Length of B = 1 ' B empty? full? F, F
52] ! Removing from B ! Length of B = 0 ' B empty? full? T, F
53] ! Removing from B

54] | Exception Status Thrown

55] ! Program :Remove _from _Q

56] ! Message empty Q

57] ! Level : 5

58] !

59] ! Exception Summary:

60] ! Exception count = 1

61] ! Highest level = 5

Figure 7.6. Testing of the Queue Class

©2001 J.E. Akin

141

7.4 Linked Lists

From our limited discussion of stacks and queues it should be easy to see that to try to insert or remove an
object at the middle of a stack or queue is not an efficient protédsed listsare containers which make

it easy to perform the operations of insertion and deletion. A linked list of objects can be thought of as a
group of boxes, usually callatbdes each containing an object to stored angoanter, or reference, to

the box containing the next object in the list. In most of our applications a list is referenced by a special
box, called theheaderor root node, which does not store an object but serves mainly to point to the first
linkable box, and thereby produces a condition where the list is never truly empty. This simplifies the
insertion scheme by removing an algorithmic special case. We will begin our introduction of these topics
with asingly linked list also known as a simple list. It is capable of being traversed in only one direction,
from the beginning of the list to the end, or vice versa.

As we have seen, arrays of data objects work well so long as we know, or can compute, in advance
the amount of data to be stored. The data structures (linked lists and trees) to be considered here employ
pointersto store and change data objects when we do not know the required amount of storage in advance.
During program execution linked lists and trees allow separate memory allocations for each individual
data object. However, they do not permit direct access to an arbitrary object in the container. Instead
some searching must be performed and thus they incur an execution time penalty for such an access
operation. That penalty is smaller in tree structures than in linked lists (but is smallest of all in arrays).

Linked lists and trees must use pointer (reference) variables. Fortran pointers can simply be thought of
as an alias for other variables of the same type. We are beginning to see that pointers give a programmer
more power. However, that includes more power to “shoot yourself in the foot”; they make it hard to
find some errors; and can lead to new types of errors such as the soroalhedry leaks Recall that
each pointer must be in one of three states: undefined, null, or associated. As dummy arguments within
routines pointer variables cannot be assigned the INTENT attribute. That means they have a greater
potential for undesiredide effects To avoid accidentally changing a pointer it is good programming
practice to clearly state in comments the INTENT of all dummy pointer arguments and to immediately
copy those with an INTENT IN attribute. Thereafter working with the copied pointer guarantees that an
error or later modification of the routine can not produce a side effect on the pointer. We also want to avoid
adangling pointerwhich is caused by a deallocation that leaves its target object forever inaccessible. A
related problem is a memory leak enreferenced storagguch as the program segment:

real, pointer :: X _ptr ()
allocate (X _ptr(Big _number))
. luse X _ptr

hljllify (X _ptr) ! dangling pointer

because now there is no way to release memory foptX To avoid this we need to free the memory
before the pointer is nullified, so the segment becomes:

real, pointer :: X _ptr ()
allocate (X _ptr(Big _number))
... luse X _ptr
deallocate (X _ptr) ! memory released
nullify (X _ptr)

Remember that in F95 the memory is automatically deallocated at the end of the scope of the variable,
unless one retains the variable with a SAVE statement (and formally deallocates it elsewhere).

7.4.1 Singly Linked Lists

We begin the study of the singly linked list by showing the notations employed in Fig. 7.7. From experi-
enced we have chosen to have a dummy first node, dalied , to simplify our algorithms so that a list

is never truly empty. Also as we scan through a list we will use one pointer, caiteht , to point to

the current object in the list and a companion, caiedious , to point to the directly preceding object

(if any). If no objects have been placed in the list then both of these simply point tirdhe node.

The end of the list is denoted by thext pointer attribute taking on theull value. To insert or delete
objects one must be able to rank two objects. This means that in order to have a generic linked list one
must overload the relational operatorg, #nd ==) when the object to be placed in the container is de-
fined. Since most objects have different types of attributes the overloading process is clearly application

©2001 J.E. Akin 142

Type (Singly _Linked _Node) :: | Object | An Object instance attribute
| | and one pointer attribute.
| instance |

a) Singly linked node

| First | <--- Singly = _Linked _List % First (An empty object instance)
| Next --+---- >| Obj _1 | <-- Previous _pointer
| Next e >| Obj _m |<-- Current _pointer
""""""" | Next —+-—- >| Obj _n |
| Next --+---- > Null

| <-- Singly _Linked _List % First

|

| First | <-- Previous _pointer
| | <--- Current _pointer
| Next --+----- > Null

c) An “empty” (one node) singly linked list

Figure 7.7: Singly linked list terminology

dependent. The process for inserting an object is sketched in Fig. 7.8 while that for deleting an object is
in Fig. 7.9.

TheSingly _Linked _List classis giveninFig.7.10. It starts with the definition of a singly linked
node (lines 4-8) that has an object attribute and a pointer attribute to locate the next node. Then a list
is begun (lines 10-13) by creating the dummy first node that is consider to represent an empty list. The
object deletion member must employ an overloaded operator (line 28), as must the insertion member
(line 52). Observe that a list never gets “full”, unless the system runs out of memory. The empty list test
member (line 62) depends on the pointer status, but is independent of the objects stored. The constructor
for a list (line 68) simply creates the first node and nullifies it. The printing member (line 74) is called
aniterator since it runs through all objects in the list. The testing program for this container type and
its output results are given in Fig. 7.11. In order to test such a container it is necessary to have an object
type defined. Here an object with a single integer value was selected, and thus it was easy to overload the
relational operators with a clear meaning as shown in Fig. 7.12.

©2001 J.E. Akin 143

INSERT

Figure 7.8 Inserting an Object in a Singly Linked List

DELETE

Figure 7.9 Deleting an Object from a Singly Linked List

©?2001 J.E. Akin 144

1] module singly _linked _list

2 use class _Object

3 implicit none

4

5 type S _L_node ! Singly Linked Node
6 private

7 type EObject) o value I Object attribute

8 type (S _L_node), pointer :: next ! Pointer to next node
8 end type S _L_node

1

11 type S _L_list I Singly Linked List of Nodes
12 private

13 glpe (S _L_node), pointer :: first | Dummy first object in list
%451 end type S _L_list

16] contains

17 subroutine S _L _delete (links, Obj, found)

18 type (S _L_list), intent (inout) :: links

19 type (Object), intent (in) :: j

20 logical, intent (out) :: found

%% type (S _L_node), pointer . previous, current

23 ! find location of Obj

24 previous => links%first ! begin at top of list

25 current => previous%next ! begin at top of list

26 found = .false. I initialize

27 do

28 if (found .or. (.not. associated (current))) return ! list end
29 if (Obj == current%value) then ! ** OVERLOADED ***
30 ound = .true. ; exit ! this location search

31 else ! move the next node in list

32 previous => previous%next

33 current => current%next

34 end if

35 end do ! to find location of node with Obj

36 ! delete if found

37 if (found) then

38 previous%next => current%next ! redirect pointer

39 deallocate (current) | free space for node

40 end if

41 end subroutine S _L_delete

42

Fig. 8.5, A Typical Singly Linked List Class of Objects (continued)

©2001 J.E. Akin 145

43 subroutine S _L_insert (links, Obj)

44 type (S _L_list), intent (|nout) o links

45 type (Object), intent(in) . Obj

46 type (S _L_node), pointer I previous, current

47

48 ! Find location to insert a new object

49 previous => links%first ! initialize

50 current => previous%next I initialize

51 do

52 if (.not. associated (current)) exit ! insert at end

53 If (Obj < current%value) exit I *** OVERLOADED ***
54 previous => current ! inserbefor current
55 current => current%next ! move to next node
56 end do ! to locate insert node

57 I Insert before current (duplicates allowed)

58 allocate (previous%next) ! get new node space

59 previous%next%value = Obj ! new object inserted

60 previous%next%next => current I new next pointer

gl end subroutine S _L_insert

2

63 function is _S_L_empty (Imks) result (t _or _f)

64 type ﬁS —L_list), intent (in) : k

65 logica _or _f

66 t _or _f = .not. associated (Ilnks%flrst%next)

27 end function is _S_L_empty

8

69 function S _L new () result (new _list)

70 type (S _L_list) :: new _list

71 allocate (new _ listo%first) I get memory for the object
72 nullify (_new _ list%first%next) ! begin with empty list
73 end function S —L_new

74

75 subroutine print _list (links)

76 type (S _L_Ilst) |ntent (in) :: links

77 type (S _L_node), pointer o current

78 integer 1 counter

79 current => links%first%next

80 counter = 0 ; print *’Link Object Value’

81 do

82 if (.not. associated (current)) exit ! list end

83 counter = counter + 1

84 print *, counter, ’ ', current%value

85 current => current%next

86 end do

87 end subroutine print _S_L_list

88] end module singly _linked _list

Figure 7.10 A Typical Singly Linked List Class of Objects

©2001 J.E. Akin 146

1] program main | test a singly linked object list
2] use singly _linked _list
3] implicit none
4 type (S _L_list) :: container
5 type ﬁObject) :» Obj _1, Obj _2, Obj _3, Obj _4
6 logica . delete _ok
7
8 Obj _1 = ObjectElS; ; Obj _2 = ObjectEZS; I constructor
9 Obj _3 = Object(35) ; Ob _4 = Object(45) ! constructor
10 container = S —L _new(
11 print *, 'Empty status is ', Is _S_L_empty (container)
12 call S _L_insert (container, Obj —4) ! insert object
13 call S _L_insert (container, Ob) —2) ! insert object
14 cal S _L_insert (container, Obj _1) ! insert object
15 call print _S_L_list (container)
16
17 cal S _L_delete (container, obj _2, delete _ok)
18 print *, 'Object: ', Obj _2, ' deleted status is ’, delete _ok
19 call print _S_L_list (container)
20 print *, 'Empty status is ’, is _S_L_empty (container)
21
22 cal S _L_insert (container, Obj _3) ! insert object
23 call print _S_L_list (container)
24 cal S _L_delete (container, obj _1, delete _ok)
25 print *, 'Object: ', Ob _1, ' deleted status is ’, delete _ok
26 cal S _L_delete 2container, obj _4, delete _ok)
27 print *, 'Object: ', Obj _4, ' deleted status is ’, delete _ok
28 call print _S_L_list (container)
2(9) print *, 'Empty status is ’, is _S_L_empty (container)
3
31 cal S _L_delete (container, obj _3, delete _ok)
32 print *, 'Object: ’, Obj -3, deleted status is ', delete _ok
33 print *, 'Empty status is ', is _S_L_empty (container)
34 call print _S_L_list (container)
35] end program ! running vyields
36] ! Empty status is T
37] ! Link Object Value
38 !'1 15
39] !2 25
40] ! 3 45
41] ! Object: 25 deleted status is T
42] ! Link Object Value
431 11 15
441 1 2 45
45] | Empty status is F
46] ! Link Object Value
471 11 15
48] 12 35
49] I3 45
50] ! Object: 15 deleted status is T
51] ! Object: 45 deleted status is T
52] ! Lin Object Value
53] I'1 35
54] | Empty status is F
55] ! Object: 35 deleted status is T
56] ! Empty status is
57] ! Link Object Value
Figure 7.11 Testing the singly linked list with integers
1] module class _Object
2] implicit none
3 type Object ! An integer object for testing lists
4 integer :: data ; end type Object
5
6 interface operator (<) | for sorting or insert
7 module procedure less _than _Object ; end interface
8 interface operator (==) I for sorting or delete
18 module procedure equal _to _Object ; end interface
11] contains ! overload definitions only
12 function less _than _ tgect (Obj _1, Obj _2) result (Boolean)
13 type ﬁObject), intent(in) :: Obj _1, Obj _2
14 logica :: Boolean
15 Boolean = Obj _1%data < Obj _2%data ! standard (<) here
16 end function less _than _Object)
17 function equal ~~ _to _Object (Obj _1, Obj _2) result (Boolean)
18 type ﬁObjECt), intent(in) :: Obj _1, Ob) _2
19 logical :: Boolean
20 Boolean = Obj _1%data == Obj _2%data ! standard (==) here
21 end function equal _to _Object
22] end module class _Object

Figure 7.12 Typical object definition to test a singly linked list

©2001 J.E. Akin 147

N [
Doubly _Linked _List = > | \ | Header [11
[\ [11

I |

I
Trailing _pointer --- > || Object _1 | 11

[[1]
|--
I
i\ |
| Previous _pointer \I/
|
_ I _ |
Current _pointer ---- > || Object |1
[1]
I__
N\ | Next _pointer
| \|/
|
] , |
[11 Object _m 1]
[[1]
|--
I
I\ |
| \|/
|
[1] _ A .
111 Object _n | V] Null _pointer

(. I\

Figure 7.13 Notations for a Doubly Linked List

7.4.1.1 Example: A List of Sparse Vectors

In this example we want to create a linked list to hold sparse vectors (singly subscripted arrays) where
the length of each vector is specified. We will do simple operations on all the vectors like input them,
normalize them, add them (if their sizes are the same), etc. In doing this we will make use of some of the
efficiencies that F90 provides for arrays, such as using the subscript array triplet to avoid serial loops,
and operating on arrays by name alone. This is an example where a similar C++ implementation would
be much longer in length because of the need to provide all the serial loops.

7.4.2 Doubly Linked Lists

The notations of the doubly linked list are shown in Fig. 7.13. Again we have chosen to have a dummy
first node, calledheader , to simplify our algorithms so that a list is never truly empty. Also as we scan
through a list we will use one pointer, calledrrent , to point to the current object in the list and a
companion, callegrevious , to point to the directly preceding object (if any). If no objects have been
placed in the list then both of these simply point to leader node. The end of the list is denoted by
thenext pointer attribute taking on thaull value. To insert or delete objects one must be able to rank
two objects. This means that in order to have a generic linked list one must again overload the relational
operators, £ and ==) when the object to be placed in the container is defined.

An incomplete, but illustrativ®oubly _Linked _List classis givenin Fig. 7.14. It starts with the
definition of a doubly linked node (lines 4-8) that has an object attribute and a pair of pointer attributes to
locate the nodes on either side of the object. Then alist is begun (lines 10-13) by creating the dummy first
node that is consider to represent an empty list. The object insertion member must employ an overloaded
operator (line 53), as before. Observe that a list never gets “full”, unless the system runs out of memory.
The constructor for alist (line 17) simply creates the first node and nullifies its pointers. A corresponding
destructor (line 24) has been provided to delete every thing associated with the list when we are done

©2001 J.E. Akin 148

1] module doubly _linked _list

2] use class _Object

3] implicit none

4 type D _L_node

5 private

6 type (Object) ;2 Obj

7 type (D _L_nodeg, pointer :: previous

8 type (D _L_node), pointer :: next

9 end type D _L_node

10

11 type D _L_list

12 private

13 type (D _L_node), pointer :: header

14 end type D _L_list

15

16] contains

17

18] function D _L_new () result (new _list) ! constructor
19 type (D _L_list) :: new _list

20 allocate (new _list % header)

21 nullify (new _list % header % previous)
22 nulli new _list % header % next)

23] end function D —_L_new

24

25] subroutine destroy _D_L_List (links) ! destructor
26 type (D _L_list), intent (in) :: links

27 type (D _L_node), pointer o current

28 do

29 current => links % header % next

30 if (.not. associated (current)) exit

31 current % previous % next => current % next
32 if (associated (current % next)) then
33 current % next % previous => current % previous
34 end if

35 nullify (current % previous)

36 nullify (current % next)

37 print *, 'Destroying object ’, current % Obj
38 deallocate (current)

39 end do

40 deallocate (links % header)

41 print *'D _L_List destroyed’

42] end subroutine destroy _D_L_List

43

Fig. 7.14, A Typical Doubly Linked List Class of Objects (continued)

with it. The printing member (line 90) is called &arator since it runs through all objects in the list.

The testing program for this container type and its output results are given in Fig. 7.15. Here an object
with a single integer value was selected, and thus it was easy to overload the relational operators with a
clear meaning as shown in Fig. 7.12.

7.5 Direct (Random) Access Files

Often it may not be necessary to create special object data structures such as those outlined above. From
its beginning Fortran has had the ability to create a sophisticated random access data structure where the
implementation details are hidden from its user. This was necessary originally since the language was
utilized on computers with memory sizes that are considered tiny by today’s standard (e.g., 16 Kb), but

it was still necessary to efficiently create and modify large amounts of data. The standard left the actual
implementation details to the compiler writers. That data structure is known as a “direct access file”. It
behaves like a single subscript array in that the object at any position can be read, modified, or written at
random so long as the user keeps up with the position of interest. The user simply supplies the position,
known as the record number, as additional information in the read and write statements. With today’s
hardware, if the file is stored on a virtual disk (stored in random access memory) there is practically no
difference in access times for arrays and direct files.

It should be noted here that since pointers are addresses in memory they can not be written to any
type of file. That, of course, means that no object having a pointer as an attribute can be written either.
Thus in some cases one must employ the other types of data structures illustrated earlier in the chapter.

To illustrate the basic concepts of a randon access file consider the program called ran-
dom_access file which is given in Fig. 7.16. In this case the object is simply a character string, as

©2001 J.E. Akin 149

43] subroutine D _L_insert _before (links, values)

44 type (D _L_list), intent (in) :: links

45 type (Object), intent (in) :: values

46 type (D _L_node), pointer i current | Temp traversal pointer
47 type (D _L_node), pointer ;o trailing I Preceding node pointer
48] ! Find location to insert new node, in ascending order

49 trailing => links % header I initialize

50 current => trailing % next ! initialize

51 do

52 if (.not. associated (current)) exit ! insert at end

53 If (values < current % Obj) exit ! insert before current

54 trailing => current ! move to next node

55 current => current % next ! move to next node
56 end do

57] ! Insert before current (duplicates allowed)

58 allocate (trailing % next) I get new node space
59 trailing % next % Obj = values I new object inserted
60] ! |Insert the new pointers

61 if (.not. associated (current)) then ! End of list (special)

62 nullify (trailing % next % next)

63 trailing % next % previous => trailing

64 else I Not the end of the list
65 trailing % next % next => current

66 trailing % next % previous => trailing

67 current % previous => trailing % next

68 end if

69] end subroutine D _L_insert _before

70

71] function Get _Oléj _Pptr (ptr _to _Obj) result (values)

72 type (D _L_node), mtent (in) ptr _to _Obj

73 type (Obiject) " 'values ! intent out

74 values = ptr _to _Obj % Obj

75] end function Get _Obj _at _Ptr

76

77] function Get _Ptr _to _Obj (Ilnks values) result (ptr _to _Obj)
78 type (D _L_list), intent (in) :: links _L _list header
79 type Object) intent (in) values ! Node identifier Object

80 type (D _L_nodeg, pointer Loptr _to _Obj ! Pointer to the Object
81 type (D _L_node), pointer o current ! list traversal pointer
82 current => links % header % next

83 do ! Search list, WARNING: runs forever if values not in list

84 if (current % Obj == values) exit I #** OVERLOADED ***

85 current => current % next

86 end do

87 tr _to _Obj => current ! Return pointer to node
88] end function Get _Ptr _to _Obj

89

90] subroutine print _D_L_list (links)

91 type (D _L_list), intent (in) :: links

92 type (D _L_node), pointer o current ! Node traversal pointer

93 integer ;o counter ! Link position

94] | Traverse the list and print its contents to standard output

95 current => links % header % next

96 counter = 0 ; print *’Link Object Value’

97 do

98 if (.not. associated (current)) exit

99 counter = counter + 1

100 print *, counter, ’ ', current % Obj

101 current => current % next

102 end do

103] end subroutine print _D_L_list

104] end module doubly _linked _list

Figure 7.14 A Typical Doubly Linked List Class of Objects

defined in line 4. The hardware transportability of this code is assured by establishing the required con-
stant record with the intrinsic given in line 10. It is then used in opening the file, which is designated
as a direct file in line 12. Lines 16-24 create the object record numbers in a sequential fashion. They
also define the new object to be stored with each record. In lines 27-32 the records are accessed in a
backwards order, but could have been accessed in any random or partial order. In line 35 a random object
is given a new value. Finally, the changes are output in a sequential order in lines 37-42. Sample input
data and program outputs are included as comments at the end of the program.

©2001 J.E. Akin 150

program main

1

2] use doubly _linked _list

3] implicit none

4 type (D _L_list) :._container)))

5 type Objectg ;2 Obj —1, Obj _2, Obj _3, Obj _4
6 type (Object] o value _at _pointer

7 type (D _L_node), pointer :: point _to _Obj _3

8

9 Obj _1 = Object(15) ; Obj _2 = Object(25

10 Obj _3 = Object(35) ; Ob _4 = Object(45

11 container = D _L_newd

12 ! print *, 'Empty status is ’, is _D_L_empty (container)

13 call D _L_insert _before (container, Obj _4

14 call D _L_insert _before (container, Obj _2

15 cal D _L_insert _before (container, Obj ~1

16 cal D _L_insert _before (container, Obj _3

17 call print _D_L_list (container)

18

19 ! find and get Obj _3) . .

20 point _to _Obj _3 = Get _Ptr _to _Obj (container, Obj L

21 value _at _pointer = Get _Obj _at _Ptr (point _to _ .
22 print *, 'Object: ’, Obj _3, ' has a value of ’, value _at _pointer
23 call destroy _D_L_List (container)

24] end Erogram main ! Running gives:

25] ! Lin Object Value

26] 1 15

271 12 25

28] ! 3 35

291 !4 45

|
!
!
!
!
30] ! Object: 35 has a value of 35
|
|
|
!
!

31] ! Destroying object 15
32] ! Destroying object 25
33] ! Destroying object 35
34] ! Destroying object 45
35 D _L_List destroyed

Figure 7.15 Testing a Partial Doubly Linked List

©2001 J.E. Akin 151

1] program random _access _file

2] ! create a file and access or modify it randomly

3] implicit none

4 character(len=10) :: name

5 integer :: j, rec _len, no _name, no _open

6 integer :: names = 0, unit = 1

7

8] ! find the hardware dependent record length of the object
9] ! to be stored and modified. Then open a binary file.

10 inquire (iolength = rec _len) name

11 open (unit, file = "random _list", status = "replace",
12 access = "direct", recl = rec _len,
13 form = "unformatted”, iostat = no _open)
14 if (no _open > 0) stop 'open failed for random _list’
15

16] ! read and store the names sequentially

17 print *, ' ’; print *, 'Original order’

18 do ! forever from standard input

19 read (*, ’'(a), iostat = no _name) nhame
20 if (no _name < 0) exit ! the read loop

21 names = names + 1 ! record number
22 write (unit, rec = names) name ! save record
23 print *, name ! echo

24 end do

%g if (names == 0) stop 'no records read’

27] ! list names in reverse order

28 print *, ’ ', print *, 'Reverse order’

29 do j = names, 1, -1

30 read (unit, rec = j) name

31 print *, name

%g end do ! of random read

34] ! change the middle name in random file

35 write (unit, rec = (names + 1)/2) 'New _Name’
36

37] ! list names in original order

38 print *, ' ’; print *, 'Modified data’

39 do j = 1, names

40 read (unit, rec = j) name

41 print *, name

4% end do ! of random read

4

44 close (unit) ! replace previous records and save

45] end program random _access _file

46] ! Running with input of: Name —

47] ! B _name

48] ! 3 _name

49] ! name _4

50] ! Fifth

51] ! Yields:

52] ! Original order Reverse order Modified data

53] ! Name _1 Fifth Name _1

54] ! B _name name_4 B_name

55] ! 3 _name 3_name New_Name
56] ! name _4 B_name name_4

57] ! Fifth Name _1 Fifth

Figure 7.16 Utilizing a Random Access File as a Data Structure

©2001 J.E. Akin 152

7.6 Exercises

©2001 J.E. Akin 153

154

Chapter 8

Arrays and Matrices

8.1 Subscripted Variables: Arrays

It is common in engineering and mathematics to employ a notation where one or more subscripts are
appended to a variable which is a member of some larger set. Such a variable may be a member of a
list of scalars, or it may represent an element in a vector, matrix, or Cartesian telmsengineering
computation, we usually refer to subscripted variablearesys. Since programming languages do not

have a convenient way to append the subscripts, we actually denote them by placing them in parentheses
or square brackets. Thus, an element usually writted;asbecomesi(,k) in Fortran and MTLAB,

andA[j][k] in C++.

Arrays have properties that need to be understood in order to utilize them correctly in any program-
ming language. The primary feature of an array is that it must have at least one subscript. The “rank” of
an array is the number of subscripts, or dimensions, it has. Fortran allows an array to have up to seven
subscripts, C++ allows four, and AtLAB allows only two since it deals only with matrices. An array
with two subscripts is called a rank-two array, one with a single subscript is called a rank-one array, or
a vector. Matrices are rank-two arrays that obey special mathematical operations. A scalar variable has
no subscripts and is sometimes called a rank zero array. Rank-one arrays with an extent of one are also
viewed as a scalar.

The “extent” of a subscript or dimension is the number of elements allowed for that subscript. That
is, the extent is an integer that ranges from the lower bound of the subscript to its upper bound. The
lower bound of a subscript is zero in C++, and it defaults to unity in Fortran. However, Fortran allows
the programmer to assign any integer value to the lower and upper bounds of a subscript.

The “size” of an array is the number of elements in it. That is, the size is the product of the extents of
all of its subscripts. Most languages require the extend of each subscript be provided in order to allocate
memory storage for the array.

The “shape” of an array is defined by its rank and extents. The shape is a rank-one array where each
of its elements is the extent of the corresponding subscript of the array whose shape is being determined.
Both Fortran and MTLAB have statements that return the shape and size of an array as well as statements
for defining a new array by re-shaping an existing array.

It is also important to know which of two “storage mode” options a language employs to store and
access array elements. This knowledge is especially useful when reading or writing full arrays. Arrays
are stored by either varying their leftmost subscript first or by varying the rightmost subscript first. These
are referred to as “column-wise” and “row-wise” access, respectively. Clearly, they are the same for
rank-one arrays and differ for arrays of higher rank. Column-wise storage is used by Fortran and C++,
while MATLAB uses row-wise storage.

Matrices are arrays that usually have only two subscripts: the first represents the row number, and
the second the column number where the element is located. Matrix algebra places certain restrictions on
the subscripts of two matrices when they are added or multiplied, etc. The fundamentals of matrices are
covered in detail in this chapter.

tAn n-th order tensor has subscripts and transforms to different coordinate systems by a special law. The most common uses
are scalar¢n = 0) and vector§n = 1).

©2001 J.E. Akin 155

| Action | C++2 | F90 | F77 | MaATLAB]
Pre-allocate

e integer A[100] INTEGER A(100) INTEGER A(100) A(100)=0
Initialize for j=0,99 A=12 do 5 J=1,100 for j=1:100
Afj]=12 A@J)=12 A(j)=12
end 5 continue end

aArrays in C++ have a starting index of zero.

Table 8.1 Typical Vector Initialization

| Purpose | F90 | MATLAB |

Form subscripts O @]
Separates subscripts & elements ,
Generates elements & subscripts
Separate commands

Forms arrays) []
Continue to new line & ...
Indicate comment ! %
Suppress printing default ;

Table 8.2 Special Array Characters

Both Fortran and C++ require you to specify the maximum range of each subscript of an array before
the array or its elements are usedAMAB does not have this as a requirement, but pre-allocating the
array space can drastically improve the speed af MB, as well as making much more efficient use of
the available memory. If you do not pre-allocateMAB arrays, then the interpreter must check at each
step to see if a position larger than the current maximum has been reached. If so, the maximum value is
increased and memory is found to store the new element. Thus, failure to pre-allocatesvarrays is
permissible but inefficient.

For example, assume we want to set a veatbaving 100 elements, to an initial value of 12. The
procedures are compared in Table 8.1. This example could have also been done efficiently in F90 and
MATLAB by using the colon operato#(1:100) = 12 . The programmer should be alert for the chance
to replace loops with the colon operator: it's more concise while retaining readability and executes more
quickly. The joys of the colon operator are described more fulgii.3 (page 159).

Array operations often use special characters and operators. Fortran has “irmgiedps associ-
ated with its array operations (sg4.3.2, page 60). Similar features inAvLAB and F90 are listed in
Table 8.2.

Fortran has always had efficient array handling features, but until the release of F9O0 it was not easy
to dynamically create and release the memory space needed to store arrays. That is a useful feature for
arrays that require large amounts of space but are not needed for the entire life of the program. F90 has
several types of arrays, with the most recent types being added to allow the use of array operations, and
intrinsic functions similar to those in MrLAB. Without getting into the details of the F90 standards and
terminology we will introduce the most common array usages in a historical order:

F77: Constant Arrays, Dummy Dimension Arrays, Variable Rank Arrays
F90: Automatic Arrays, Allocatable Arrays.
These different approaches all have the common feature that memory space needed for an array must be
set aside (allocated) before any element in the array is utilized.
The new F90 array features include the so-called automatic arrays. An automatic array is one that
appears in a subroutine, or function and has its sizendbtits name, provided in the argument list of the
subprogram. For example,

subroutine auto _A_B (M, N, Other _arguments)
implicit none
integer :: M, N

©2001 J.E. Akin 156

real : AM, N), B(M) I Automatic arrays
| Create arrays A & B and use them for some purpose

end subroutine auto _A_B

would automatically allocate space for thlrows andN columns of the array and for theMrows of
arrayB. When the purpose of the subroutine is finished and it “returns” to the calling program the array
space is automatically released, and the arregsdB cease to exist. This is a useful feature, especially
in Object Oriented programs. If the system does not have enough space available to allocate for the array
the program stops and gives an error message to that effect. With today’s large memory computers that
is unlikely to occur except for the common user error where the dimension argument is undefined.

An extension of this concept that allows more flexibility and control is the allocatable array. An
allocatable array is one that has a known rank (number of subscripts), but an initially unknown extent
(range over each subscript). It can appear in any program, function, or subroutine. For example,

program make _A_B ! Allocatable arrays

implicit none

real, allocatable :: A(:,:), B() | Declares rank of each

integer oM, N ! Row and column sizes
integer A _B_Status ! Optional status check

print *"Enter the number of rows and columns: "
read *, M, N ! Now know the (default) extent of each subscript

allocate (A(M, N), B(M), stat = A _B_Status) ! dynamic storage
I Verify that the dynamic memory was available
if (A _B_Status /= 0) stop "Memory not available in make _A_B"

I Create arrays A & B and use them for some purpose

déalloca}te (A, B) ! free the memory space
! Do other things

end pr'c')'gram make _A_B

would specifically allocate space for the M rows and N columns of the array A and for the M rows of
array B, and optionally verify that the space was available. When the purpose of the arrays are finished
the space is specifically released, and the arrays A and B cease to exist. The optional status checking
feature is useful in the unlikely event that the array is so large that the system does not have that much
dynamic space available. Then the user has the option of closing down the program in some desirable
way, or simply stopping on the spot.

The old F77 standard often encouraged the use of dummy dimension arrays. The dummy dimension
array is one that appears in a subroutine, or function and has ite&ite name provided in the argument
list of the subprogram. For example,

subroutine dummy _A_B (M, N, A, B, Other _things)

implicit none
integer :: M, N
real 0 A(M, N), B(M) I dummy arrays

I Create arrays A & B and use them for some purpose

end subroutine dummy _A_B

would imply thatexistingspace for thevirows andN columns of the arrayp and for theMrows of array
B (or more was declared or allocated in the calling program. When the purpose of the subroutine is
finished and it “returns” to the calling program the space in the calling program for the areaydB
continues to exist until the declaring program unit terminates.

Of course the use of constant dimensioned arrays is always allowed. The constant dimension array is
one that appears in any program unit and has integer constants, or ipdegeretevariables (preferred)
as given extents for each subscript of an array. For example,

program main

implicit none
integer, parameter :: M —_max=20, N _max=40 ! Maximum expected
integer . Days —per _Month(12) ! Constant array
integer M, N I 'User sizes
real :: A(MM _max, N_max), B(M _max) ! Constant arrays
print *,"Enter the number of rows and columns: "
read * M, N I The user extent of each subscript

I Verify that the constant memory is available
if (M >M _max) stop "Row size exceeded in main"
if (N >N _max) stop "Column size exceeded in main"
I Create arrays A & B and use them for some purpose
call dummy _A_B (M, N, A, B, Other _things) ! dummy arrays

©2001 J.E. Akin 157

| Action | F90 | MATLAB |

Define siz& integer @ A (2, 3) A(2,3)=0;
Enter rows A(1,)=(/1,7,-2/) A=[1,7,-2;
AEZ,:3=5/3,4,6/) 3,4,6];
a0ptional in MATLAB, but improves efficiency.
Table 8.3 Example Array Definitions
| F90 | MATLAB | Result |
1 4
data = (/(k, k=1,6))) data = [1 : 6] M=1]25
M = reshape(data,(/3,2/)) M = reshape(data,3,2) 3 6
1 3 5
N = reshape(data,(/2,3/)) N = reshape(data,2,3) N = 5 4 6

Table 8.4 Array Reshape Intrinsics

end program main

subroutine dummy _A_B (M, N, A, B, Other _things) ! dummy arrays

implicit none
integer :: M, N
real : AM, N), B(M)

I Create arrays A & B and use them for some purpose

end subroutine main

In general it is consideregkry bad stylg¢o use integer constants, like 12, in a dimension, orb0a
loop control, except for the unusual case where its meaning is obvious, and where you never expect to
have to change the number. In the example declaration:

integer :: Days _per _Month(12) ! Constant array

It is obvious that we are thinking about 12 months per year and that we do not expect the number of
months per year to ever change in other potential applications of this program.

8.1.1 Initializing Array Elements

Explicit lists of the initial elements in an array are allowed by C++, Fortran, antuls. MATLAB is

oriented to enter element values in the way that we read, that is, row by row. Fortran and C also allow
array input by rows, but the default procedure is to accept values by ranging over its subscripts from left
to right. That is, both F90 and C++ read by columns as their default mode. For example, consider the

2 x 3 array
1 7 =2
A=)
[3 4 6]

This array could be typed as explicit input with the commands shown in Table 8.3. An alternative for F90

and MATLAB is to define the full array by column order as a vector that is then reshaped into a matrix

with a specified number of rows and columns. The use oREBHAPEperator is shown in Table 8.4.
Returning to the previous example, we see that the matcibuld have also been defined as

F90 A = reshape((/1,3,7,4, -2,6/), (/12,3))
A = reshape((/1,3,7,4, -2,6/),shape(A))
MATLAB | A = reshape([1,3,7,4, -2,6], 2,3)

©2001 J.E. Akin 158

To initialize the elements of an array to zero or unity, F90 ansrM\B have special constructs or
functions that fill the bill. For example, faot to be zero and to have unity elements, we could use the
following commands.

| Action | F90 | MATLAB |
Define size| integer :: A Ez, 3) A§2,3):0;
integer :: B (3) B(3)=0;
ZeroA A=0 A=zeros(2,3);
Initialize B | B=1 B=ones(3);

If we want to create a new arr@mwith the first three even numbers, we would usglied loops

| Action | F90 | MATLAB |
Even set| B=(/(2*k k=1,3))) B=2[1:1:3];
B=(/(k,k=2,6,2)/) B=[2:2:6];

Arrays can also be initialized by reading their element values from a stored data file. The two most
common types of files are ASCII (standard characters) and binary (machine language) files. ASCII files
are easy to read and edit, but binary files make more efficient use of storage, and are read or written much
faster than ASCII files. ASCII files are often denoted by the name extension of “dat”. Binary files are
denoted by the name extension “mat” inAMLAB, while in Fortran the extension “bin” is commonly
employed.

For example, assume that the ab@y2,3) array is to be initialized by reading its values from an
ASCII file created by a text editor and given the name afdat . Further, assume that we wish to
multiply all elements by 3 and store it as a new ASCII file. Then we could usel procedures like
those in Table 8.5 where the lastAvi. AB command associated a file name and a file type with the desired
input/output (1/0O) action. Fortran requires @PENstatement to do this if the default I/O files (unit 5 to
read and unit 6 to write) are not used in the read or write.

8.1.2 Intrinsic Array Functions

Note that MaTLAB has intrinsic functionsnes andzeros to carry out a task that F90 does with an op-
erator. Often the reverse is true AVLAB has several operators that in Fortran correspond to an intrinsic
function or aCALLed function. A comparison of the similar F90 anchkM.AB array mathematical oper-
ators are given in Table 8.5. They generally only differ slightly in syntax. For example, to transpose the
matrix A, the F90 construct isanspose(A) while in MATLAB it's simply A’ .t In F90, the* operator
means, for matrices, term by term multiplication: whes(} ? 2] andB=[} 2], A*B yields [} £ 20].
In MATLAB, the same operation is expressedas . To multiply the matriceg. andB, Fortran requires
the use of the intrinsic functiomatmul (i.e., matmul(A,B)) while MATLAB uses the operator A*B).
Another group of commonly used functions that operate on arrays in Fortran90 andabl are
briefly described in Table 8.6. Both languages have several other functions of a more specialized nature,
but those in Table 8.6 are probably the most commonly used in programs.
Often one needs to truncate a real number in some special fashion. Table 8.7 illustrates how to do
that using some of the functions common to the languages of interest. That table also implies how one
can convert reals to integers and vice versa.

8.1.3 Colon Operations on Arrays (Subscript Triplet)

The syntax of the colon operator, which is available immAB and F90, is detailed in Table 4.6.

What the colon operator concisely expresses is a sequence of numbers in an arithmetic progression. As
shown in the table, the MrLAB expressiorB::.E expresses the sequere B+I, B+2*1, ...,

B+ £-£]1 . The complicated expression for the sequence’s last term simply means that the last value of
the sequence does not exceed (in magnitude) the endEalue

fIn MaTLAB, A’ actually means conjugate transposeAlfs real, this operator performs the transpose as desired idf
complex and we want its transpose, thaMAB construct isA.” .

©2001 J.E. Akin 159

upy ‘3t 10020

09T

Description | Equation | Fortran90 Operator | Matlab Operator | Original Sizes| Result Size
Scalar plus scalar c=a=xb c=azxb c=a=xb 1,1 1,1
Element plus scalar Cik, =, £ b c=a=xb c=a=xb m,nandl, 1 m,n
Element plus element | ¢, = a;, £ bjp, c=a=xb c=a=xb m,n andm,n m,n
Scalar times scalar c=axb c=axb c=ax*b; 1,1 1,1
Element times scalar Cik, = @ X b c=axb c=ax*b m,nandl, 1 m,n
Element times element ¢, = a;, X by, c=axb c=a.xb; m,n andm,n m,n
Scalar divide scalar c=a/b c=a/b c=a/b; 1,1 1,1
Scalar divide element Cik = /b c=a/b c=a/b; m,n andl, 1 m,n
Element divide element ¢, = a;/bjx c=a/b ¢ =a./b m,n andm,n m,n
Scalar power scalar c=a’ ¢ = axx*b c=aAlb; 1,1 1,1
Element power scalar Cik = agk c = ax*b c=aAb m,nandl, 1 m,n
Element power element ¢, = ag.f,'j’ ¢ = axxb c=a.Nb; m,n andm, n m,n
Matrix transpose Crj = Ajp C' = transpose (A) C=A, m,n n,m
Matrix times matrix Cij = > Aix By C' = matmul(A, B) C = Ax B; m,r andr,n m,n
Vector dot vector c= . ApBy ¢ =sum(A * B) c =sum(A. x B); | m,1andm,1 1,1
¢ = dot _product(A, B) c=Ax B, m,1 andm, 1 1,1

Table 8.5 Array Operations in Programming Constructs. Lower case letters denote scalars or scalar elements of arrays. Matlab arrays are allowed a maximum of
two subscripts while Fortran allows seven. Upper case letters denote matrices or scalar elements of matrices.

You can also use the colon operator to extract smaller arrays from larger ones. If we wanted to extract
1 7-2

the second row and third column of the arrdy= [3 16] to get, respectively,

G:[346], C =)
6

we could use the colon operator as follows.

| Action | F90 | MaATLAB]
Define size integer :: B E3§ BES;=O;
integer :: C (2 C(2)=0;
Extract row B=A(2,:) B=A(2,:);
Extract columns| C=A(,3) C=A(;,3);

Table 8.6 Equivalent Fortran90 and NrLAB Intrinsic Functions.

The following KEY symbols are utilized to denote the TYPE of the in-
trinsic function, or subroutine, and its arguments: A-complex, integer,
or real; I-integer; L-logical; M-mask (logical); R-real; X-real; Y-real;
V-vector (rank 1 array); and Z-complex. Optional arguments are not
shown. Fortran90 and M LAB also have very similar array operations
and colon operators.

Type Fortran90 MATLAB Brief Description |
A ABS(A) abs(a) Absolute value of A.

R ACOS(X) acos(x) Arc cosine function of real X.

R AIMAG(Z) imag(z) Imaginary part of complex number.

R AINT(X) real(fix(x)) Truncate X to a real whole number.

L ALL(M) all(m) True if all mask elements, M, are true.
R ANINT(X) real(round(x)) Real whole number nearest to X.

L ANY (M) any(m) True if any mask element, M, is true.

R ASIN(X) asin(x) Arcsine function of real X.

R ATAN(X) atan(x) Arctangent function of real X.

R ATAN2(Y,X) atan2(y,x) Arctangent for complex number(X, Y).
I CEILING(X) ceil(x) Least integer-=real X.

Z CMPLX(X,Y) (x+yi) Convert real(s) to complex type.

Z CONJG(2) conj(z) Conjugate of complex number Z.

R COS(R-2) cos(r-z) Cosine of real or complex argument.

R COSH(X) cosh(x) Hyperbolic cosine function of real X.

I COUNT(M) sum(m==1) Number of true mask, M, elements.
R,L DOT_PRODUCT(X,Y) X'xY Dot product of vectors X and Y.

R EPSILON(X) eps Number, like XK 1.

R,Z EXP(R.2) exp(r-z) Exponential of real or complex number
I FLOOR(X) floor Greatest integet X.

R HUGE(X) realmax Largest number like X.

I INT(A) fix(a) Convert A to integer type.

R LOG(R_2) log(r_z) Logarithm of real or complex number.
R LOG10(X) log10(x) Base 10 logarithm function of real X.
R MATMUL(X,Y) X %Yy Conformable matrix multiplication, X*Y.
LV I=MAXLOC(X) [y,i]=max(x) Location(s) of maximum array element.
R Y=MAXVAL(X) y=max(X) Value of maximum array element.

LV I=MINLOC(X) [y,i]=min(x) Location(s) of minimum array element.
R Y=MINVAL(X) y=min(x) Value of minimum array element.

(continued)
©?2001 J.E. Akin 161

Type Fortran90 M ATLAB Brief Description

I NINT(X) round(x) Integer nearest to real X.

A PRODUCT(A) prod(a) Product of array elements.

call RANDOM_NUMBER(X) x=rand Pseudo-random numberg1).

call RANDOM_SEED rand('seed’) Initialize random number generator.
R REAL (A) real(a) Convert A to real type.

R RESHAPE(X, (/1,121/)) reshape(x,i, i2) Reshape array X intdd array.

(RY, SHAPE(X) size(x) Array (or scalar) shape vector.

R SIGN(X,Y) Absolute value of X times sign of Y.

R SIGN(0.5,X)-SIGN(0.5,-X) sign(x) Signum, normalized sign, -1, 0, or 1.
R,Z SIN(R_Z) sin(r_z) Sine of real or complex number.

R SINH(X) sinh(x) Hyperbolic sine function of real X.

I SIZE(X) length(x) Total number of elements in array X.
R,Z SQRT(R.2) sqrt(r—z) Square root, of real or complex number.
R SUM(X) sum(x) Sum of array elements.

R TAN(X) tan(x) Tangent function of real X.

R TANH(X) tanh(x) Hyperbolic tangent function of real X.
R TINY(X) realmin Smallest positive number like X.

R TRANSPOSE(X) X’ Matrix transpose of any type matrix.
R X=1 x=ones(length(x)) Set all elementsto 1.

R X=0 x=zero(length(x)) Set all elements to 0.

For more detailed descriptions and example uses of these intrinsic functions see Adaresal,C.,
Fortran 90 HandbookMcGraw-Hill, New York, 1992, ISBN 0-07—000406-4.

C++ - int - - floor ceil
F90 aint int anint nint floor ceiling
MATLAB real (fix) fix real (round) round floor ceil
Argument Value of Result
-2.000 -2.0 -2 -2.0 -2 -2 -2
-1.999 -1.0 -1 -2.0 -2 -2 -1
-1.500 -1.0 -1 -2.0 -2 -2 -1
-1.499 -1.0 -1 -1.0 -1 -2 -1
-1.000 -1.0 -1 -1.0 -1 -1 -1
-0.999 0.0 0 -1.0 -1 -1 0
-0.500 0.0 0 -1.0 -1 -1 0
-0.499 0.0 0 0.0 0 -1 0
0.000 0.0 0 0.0 0 0 0
0.499 0.0 0 0.0 0 0 1
0.500 0.0 0 1.0 1 0 1
0.999 0.0 0 1.0 1 0 1
1.000 1.0 1 1.0 1 1 1
1.499 1.0 1 1.0 1 1 2
1.500 1.0 1 2.0 2 1 2
1.999 1.0 1 2.0 2 1 2
2.000 2.0 2 2.0 2 2 2

Table 8.7 Truncating Numbers

©2001 J.E. Akin 162

WHERE (logical _array _expression)
true _array _assignments
ELSEWHERE
false _array _assignments
END WHERE
WHERE (logical _array _expression)
true _array _assignment

Table 8.8 FOOWHERE onstructs

One can often use colon operators to avoid loops acting on arrays to define new arrays. For example,
consider a square matrix
1 2 3

A=14 5 6
7 8 9

We can flip it left to right to create a new matrix (in F90 syntax)

B=A(;, n:1:-1) = 4
L9 8 7]
or flip it up to down
i, g -
C=A(n:1:-1,) =] 4
or flip it up to down, then left to right
9 8 7
D = A (n:1:-1, n:1:-1) =6 5 4],
3 21

wheren = 3 is the number of rows in the matrid. In the MATLAB syntax, the second and third
numbers would be interchanged in the colon operator. Actualhfs has intrinsic operators to flip
the matrices so that one could simply write

B = fliplr(A); C = flipud(A); D = rot90(A);
8.1.4 Array Logical Mask Operators

By default most M\TLAB commands are designed to operate on arrays. Fortran77 and C++ have no built
in array operations and it is necessary to program each loop. The Fortran90 standard has many of the
MATLAB array commands and often with the identical syntax as shown in Table 8.5 and 8.6. Often the
F90 versions of these functions have optional features (arguments) that give the user more control than
MATLAB does by including a logical control mask to be defined shortly.

To emphasize that df type of relational operator is to act on all elements of an array, Fortran90 also
includes an arraWwHERBlock or statement control (that is, #h statement acting on all array elements)
which is outlined in Table 8.8.

Note that the necessary loops are implied and need not be written. As an example, if

03 5 135
A_[748}’ B—{246}

©?2001 J.E. Akin 163

| Function | Description | Opt | Example
all Find if all values are true, fora fixed di- d | all(B = A, DIM = 1)
mension. (true, false, false)
any Find if any value is true, for a fixed dit d | any (B > 2, DIM = 1)
mension. (false, true, true)
count Count number of true elements for|la d | count(A = B, DIM = 2)
fixed dimension. (1, 2)
maxloc Locate first element with maximum m | maxloc(A, A < 9)
value given by mask. (2,3)
maxval Max element, for fixed dimension, given b | maxval (B, DIM=1, B > 0)
by mask. (2,4,6)
merge Pick true array, A, or false array, B, ac- — | merge(A, B, L)
cording to mask, L. 0 3 5
2 4 8
minloc Locate first element with minimumvalue m | minloc(A, A > 3)
given by mask. (2,2)
minval Min element, for fixed dimension, given b minval(B, DIM = 2)
by mask. (1,2)
pack Pack array, A, into a vector under contriol v | pack(A, B < 4)
of mask. 0,7,3)
product Product of all elements, for fixed dimen- b | product(B) ; (720)
sion, controlled by mask. product(B, DIM = 1, T)
(2,12, 30)
sum Sum all elements, for fixed dimension, b | sum(B) ;(21)
controlled by mask. sum(B, DIM = 2, T)
(9, 12)
unpack | Replace the truelocationsinarray B can-— | unpack(U, L, B)
trolled by mask L with elements from the 7 3 8
vector U. 2 4 9
0 3 5 1 3 5 T F T
A‘{? 4 8}’ B_[Q 4 6}’ L_[F F T}’ U=(789
Table 8.9 F90 Array Operators with Logic Mask Contrdl: and F' denote true and false, respectively.

Optional argumentds -- DIM & MASK,d -- DIM ,m -- MASK,v -- VECTOR andDIM

for any rowsDIM =

then, WHERE (A> B) B = A gives a hewB =

2 for any columns, an®IM =

1
7

3
4

3 for any plane.

By default, MATLAB always acts

1limplies

on matrices and considers scalars a special case. Thus, it would employ the standardfsgntax,
B,B=A, to do the same task.

A more sophisticated way to selectively pick subscripts of an array is to osgskarray. A mask
array is the same size and shape as the array on which it will act. It is a Boolean array: All its elements
have either true or false values. When associated with an operator, the operator will only act on those
elements in the original array whose corresponding mask location is truerfiee., in Fortrantrue in
C++ and1 in MATLAB and C). Fortran90 has several operations that allow or require masks (Table 8.9).
MATLAB functions with the same name exist in some cases, as seen in Table 8.6. Usually, they correspond
to the FOO0 operator where the mask is true everywhere.

©2001 J.E. Akin 164

ALL ANY COUNT

CSHIFT DOT_PRODUCT EOSHIFT
MATMUL MAXLOC MAXVAL
MINLOC MINVAL PACK
PRODUCT REPEAT RESHAPE
SPREAD SUM TRANSFER
TRANSPOSE TRIM UNPACK

Table 8.1Q Intrinsic Functions Allowing Logical Mask Control

A general Fortran principle underlies the fact that the array mentioned iwHEREnask may be
changed within th&vHEREoNnstruct. When an array appears in YMEERBtatement mask, the logical
test is executelirst and the host system retains the result independent of whatever happens later inside
theWHEREoONstruct. Thus, in the program fragment

integer, parameter :: n = 5
real :: X gn) = (k k =1,n)l
where (x> 0.0)
X = X
end where
the sign is reversed for all elementsxobecause they all pass the initial logical mask. It is as if a classic
DOsequence had been programmed
doi=1,n1
it (x(0) > 0.0) x() = -x())
end do
instead of theWVHEREoONStruct.

A more ominous and subtle issue surrounds the use of other transformational intrinsic functions listed
in Table 8.10. The danger is that when these intrinsics appear inside the boWyHEREONStruct, the
WHERBtatement’s initial mask may no longer apply. Hence, in the following example the transforma-
tional intrinsic functionSUMoperates over all five elements ¥father than just the two elementsXf
that exceed six.

integer, parameter :: n = 5
real : x(n8 = (/2 4,6, 8 10 /)
where (x > 6.0)
X = X [sum(x)
end where
Thus, the new values forare{ 2, 4, 6, 8/30, 10/3@Q rather than{2, 4, 6, 8/18, 10/1B This standard-
conforming, but otherwise “unexpected”, result should raise a caution for the programmer. If one did not
want the above illustrated result, then it would be necessary to use the same maskvefREs an
optional argument t8UM sum(x, mask = x > 6.0) . A lot of care needs to be taken to assure that

transformational intrinsics that appear il&EREONStruct use exactly the same mask.
8.1.5 User Defined Operators

In addition to the many intrinsic operators and functions we have seen so far, the F90 user can also define
new operators or extend existing ones. User defined operators can employ intrinsic data types and/or user
defined data types. The user defined operators, or extensions, can be unary or binary (i.e., have one or
two arguments). The operator symbol must be included between two periods, sugh as ‘As an

example, consider a program to be used to create a shorthand notation to replace the standard F90 matrix
transpose and matrix multiplication functions so that we could write

B=1 A
C=B x. D
or C=(tA) x. D
instead of B = TRANSPOSE(A)
C = MATMUL (B, D)
or C = MATMUL(TRANSPOSE (A), D)

©2001 J.E. Akin 165

| Operator | Action | Use | Algebra |

1. transpose LA AT

X. multiplication Ax.B AB

ik inverse of matrix QA AL

X solution A.ix.B AlB
X transpose times matrix A.tx.B ATB

Xt matrix times transposg A.xt.B ABT
.eye. identity matrix .eye.N I, N x N

Table 8.11 Definitions in Matrix Operators.

To do this, one must haveMODULE PROCEDUREdefine the operator actions for all envisioned (and
incorrect) inputs and aMTERFACE OPERATORat informs F90 what your operation symbol is.

Fig. 8.1 illustrates the code that would partially define the operator': Note that whileTRANSPOSE
accepts any type of matrix of any rank, our operator works only for real or integer rectangular arrays (of
rank 2). It would not transpode0GICAL arrays or vectors. That oversight can be extended by adding
more functions to the interface.

If one works with matrices often, then one may want to define your own library of matrix operators.
Such operators are not standard in F90 as they areAnLMB, but can be easily added. To provide a
foundation for such a library, we provideMatrix _Operators module with the operators defined in
Table 8.11. The reader is encouraged to expand the initial support provided in that module.

8.1.6 Connectivity Lists and Vector Subscripts

When using an array with constant increments in its subscripts, we usually provide its subscript in the
form of a colon operator or a control variable irb®@or FORIoop. In either case, the array subscripts

are integers. There are several practical programming applications where the required subscripts are
not known in advance. Typically, this occurs when we are dealing with an assemblage of components
that can be connected together in an arbitrary fashion by the user (e.g., electric circuits, truss structures,
volume elements in a solid model). To get the subscripts necessary to build the assemblage we must read
an integer data file that lists the junction numbers to which each component is attached. We call those
data aconnectivity file If we assume each component has the same number of junction points, then the
list can be input as a two-dimensional array. One subscript will range over the number of components
and the other will range over the number of possible junctions per component. For ease of typing these
data, we usually assume that tfé row of the array contains the integer junction, or connection, points

of that component. Such a row of connectivity data is often used in two related operafatins:;
andscatter . A gather operation uses the lists of connections to gather or collect information from
the assembly necessary to describe the component or its actioscditee operation has the reverse
effect. It takes information about the component and sends it back to the assembly. Usually, values from
the component are added into corresponding junction points of the assembly.

The main point of this discussion is that another way to define a non-sequential set of subscripts is to
use an integer vector array that contains the set. Then one can use the array name as a way to range over
the subscripts. This is a compact way to avoid an additiso&or DOloop. The connectivity list for a
component is often employed to select the subscripts needed for that component.

To illustrate the concept of vector subscripts, we will repeat the array flip example sh@&:1.i8 via
the colon operators. Here we will define an integer vector c&ea@rse that has constant increments
to be used in operating on the original arrayBy using the vector name as a subscript, it automatically
invokes an implied loop over the contents of that vector. As shown in Figure 8.2, this has the same effect
as employing the colon operator directly.

The real power of the vector subscripts comes in the case where it has integers in a random, or user
input, order rather than in an order that has a uniform increment. For example, if we repeat the above
example using a vect®andom=[3 1 2] , then both MaTLAB and F90 would give the result

©2001 J.E. Akin 166

1 MODULE Ops_Example I User defined matrix transpose example
2

3 IMPLICIT NONE

4 INTERFACE OPERATOR (.t.) ! transpose operator

5 MODULE PROCEDURE Trans.R, Trans _I ! for real or integer matrix
6 ! Remember to add logicals and vectors later

7 END INTERFACE ! defining .t.

8

9 CONTAINS ! the actual operator actions for argument types

10

11 FUNCTION Trans _R (A) ! defines .t. for real rank 2 matrix
12 REAL, DIMENSIONC(:;,:), INTENT(IN) A

13 REAL, DIMENSION SIZE(A2) SIZE(A,1)) : Trans R
14 Trans _R = TRANSPOSE (A)

15 END FUNCTION Trans _R ! for real rank 2 transpose via .t.
17 FUNCTION Trans _I (A) ! defines .t. for |nteger rank 2 matrix

18 INTEGER, DIMENSIONC(:,:), INTENT(IN A

19 INTEGER, DIMENSION SIZE(A 2), SIZE(A,1)) = Trans |
20 Trans _| = TRANSPOSE S)

21 END FUNCTION Trans _| ! for integer rank 2 transpose via .t.

23 END MODULE Ops_Example I User defined matrix transpose example

25 PROGRAM Dema Trans I illustrate the .t. operator
26 USE Ops _Example ! module with user definitions
27 IMPLICIT NONE

28 INTEGER, PARAMETER oM =3 N=2 1! rows, columns
5(9) REAL, DIMENSION(M,N) :: A ; REAL DIMENSION(N M) :
31 | define A, test operator, print results

32 A = RESHAPE (¢ (%3, 1=1,M), J=1,N) /), SHAPE(A))
33 B = .t

34 PRINT * 'MATRIX A’ ; CALL M _print (A, M, N
35 PRINT *, 'MATRIX B’ ; CALL M _print (B, N, M
36 ! Produces the result:

37 I MATRIX A

38 I RC 1 2

39 ' 1 1.000 2.000

40 ! 2 2.000 4.000

41 ! 3 3.000 6.000

42 !

43 I MATRIX B

44 I RC 1 2 3

45 ! 1 1.000 2.000 3.000

46 ! 2 2000 4.000 6.000

47 END PROGRAM DemaTrans

Figure 8.1 Creating and applying user defined operators

1 2 3
A=14 5 6|, Reverse=][321]
7 8 9
Flip left to right:
_ 9 -
B=A(: , Reverse) = 4
L9 8 7]
Flip up to down:
C = A(Reverse, :) =
L 3
Flip up to down, left to right:
9 8 7
D = A (Reverse,Reverse) =6 5 4
3 21

Figure 8.2 F90 and MATLAB Vector Subscripts and Array Shifts.

©2001 J.E. Akin 167

five = (/ 1 2 3 4 5)
I without a pad

three = eoshift(five,2) ' = (/ 3 4 5 0 0 /)
three = eoshift(five,-2) ' = (/ 0 0 1 2 3)
I with a pad

pad = eoshiftEfive,Z,Q) l'=(¢ 3 4 5 9 9)
pad = eoshift(five-29) ' = (¢ 9 9 1 2 3)

Figure 8.3 F90 end-off shift éoshift) intrinsic.

five=(/12345/)
left _3 = cshift_$fiv_e,3) '=(3 4 5 1 2)
right _3 = cshift(five,-3) ' = (/ 4 5 1 2 3

Figure 8.4 F90 Circular shift ¢shift) intrinsic.

E = A (;, Random) =

© o W

1 2
4 5
7 8

While thereshape option of F90 and MTLAB allows the array elements to change from one rect-
angular storage mode to another, one can also move elements around in the fixed shape array by utilizing
the colon operators, or by the use of “shift operators.” The latter accept an integer to specify how many
locations to move or shift an element. A positive number moves an element up a column, a negative value
moves it down the column, and a zero leaves it unchanged. The elements that are moved out of the array
either move from the head of the queue to the tail of the queue (called a “circular shift”) or are replaced
by a user specified “pad” value (called an “end off shift”). If no pad is given, its value defaults to zero.
These concepts are illustrated for F90 in Figures 8.3 and 8.4.

8.1.7 Component Gather and Scatter

Often the equations governing a system balance principle are assembled from the relative contributions
of each component. When the answers for a complete system have been obtained, it is then possible to
recover the response of each component. The automation of these processes has six basic requirements:

1. a component balance principle written in matrix form,
2. ajoint connectivity data list that defines where a given component type connects into the system,

3. a definition of ascatter operator that scatters the coefficients of the component matrices into
corresponding locations in the governing system equations,

4. an efficient system equation solver,

5. a gather operator to gather the answers from the system for those joints connected to a compo-
nent, and

6. arecovery of the internal results in the component.

The first of these is discipline-dependent. We are primarily interested in the gather-scatter operations.
These are opposites that both depend on the component connectivity list, which is often utilized as a
vector subscript. The number of rows in the component equations is less than the number of rows in the
assembled system, except for the special case where the system has only a single component. Thus, it
is the purpose of the gather-scatter operators to define the relation between a system row number and a
particular component row number. That is, they define the relation that defines the subset of component
unknowns, sayv ¢ for component, in terms of all the system unknowns, s&y V¢ C. V. Here the
containment is defined by the component’s connection list and the number of unknowns per joint. If
there is only one unknown per joint, then the subset involves only the connection list. The above process
gathers the subset of component unknowns from the full set of system unknowns.

Let the list of joints or nodes connected to the component be cilledhe k'™ member in this list
contains the corresponding system node nuntheére. K = L_e(k) . Thus, for a single unknown per

©2001 J.E. Akin 168

)

(1) (6) Component Nodes Property
1 2 (4) 3—A—5 1) 1,2 1
2) 2,3 2
3) (3) 2,4 1
—AN—| 4 (4) 4,3 3
(5) (5) 4,3 4
(6) 3,5 1

Figure 8.5. Example Circuit or Axial Spring System

joint, one simply ha&v¢ = V(L¢) C. V. Written in full loop form, the component gather operation
would be
DO k =1, size(L _e)

V_e K) = V(L _e (k)
END DO ! OVER LOCAL JOINTS

while in F90 or MATLAB vector subscript form, it is simply_e = V(L _e), for a single unknown per
joint. When there is more than one unknown per joint, the relation can be written in two ways.

We pick the one that counts (assigns equation numbers to) all unknowns at a joint before going on to
the next joint. Let the number of unknowns per joint be N. Then by deduction, one finds that the equation
number for thej-th unknown at thes*" system node is

E(K,j)=Nx*(K—-1)+j, 1<j<N.

But to find which equation numbers go with a particular component, we must use the connection list
L _e. For thek*™ local node, K = L_e (k) and

E(k,j) =N+ (L_e(k)=1)+j, 1<j<N.

If we loop over all nodes on a component, we can build an index list, say that tells which equations
relate to the component.
INTEGER, ALLOCATABLE :: | _e(), V. _e()
ALLOCATE(I —_e(N * SIZE (L _e)), V _e (N*SIZE(L _e))
DO k = 1, SIZE(L _e) ! component nodes
DO | =1, N ! unknowns per node
LOCAL = N *(k-1) + |
SYSTEM = N *(L_e (k) - 1) +j
_e (LOCAL) = SYSTEM
END DO ! on unknowns
END DO ! on local nodes.

Therefore, the generalization of the component gather process is

DO m = 1, SIZE(l _e)
V_e (m) = V(I _e (m))
END DO ! over local unknowns
or in vector subscript forv_e = V(I _e) for an arbitrary number of unknowns per joint.

To illustrate the scatter concept, consider a system shown in Figure 8.5, which has six components
and five nodes. If there is only one unknown at each joint (like voltage or axial displacement), then
the system equations will have five rows. Since each component is connected to two nodes, each will
contribute to (scatter to) two of the system equation rows. Which two rows? That is determined by the
connection list shown in the figure. For example, component (4) is joined to nodes 4 and 3. Thus, the
coefficients in the first row of the local component balance low would scatter into (be added to) the fourth
row of the system, while the second row of the component would scatter to the third system equation row.
If the component balance law is symmetric, then the columns locations scatter in the same fashion.

©2001 J.E. Akin 169

8.2 Matrices

Matrices are very commonly used in many areas of applied mathematics and engineering. While they
can be considered a special case of the subscripted arrays given above they have their on special algebra
and calculus notations that are useful to know. In the following sections we will describe matrices and
the intrinsic operations on them that are included in F90 amdiMB. Neither C nor C++ have such
useful intrinsics, but require the programmer to develop them or extract them from a special library.

A matrix is defined as a rectangular array of quantities arranged in rows and columns. The array is
enclosed in brackets, and thus if there mreows andn columns, the matrix can be represented by

a1 @12 a13 e Ay ctt Qin
a21 a22 A23 ter 425 ctt G2p
A= |- : =[A] (8.1)
a1 @32 a3 Tt Gy o Qin
L Gm1 Om2 am3 *°° Gmj ' Omn |

where the typical element;; has two subscripts, of which the first denotes the rd¥) @nd where the
second denotes the columjii{) which the element occupies in the matrix. A matrix withrows andn
columns is defined as a matrix of orderx n, or simply anm x n matrix. The number of rows is always
specified first. In Equation 8.1, the symbklstands for the matrix ofz rows andn columns, and it is
usually printed irboldfacetype. If m = n = 1, then the matrix is equivalent to a scalarnif= 1, the
matrix A reduces to the single row

A:[a11 @12 @iz o Gy Gln]:(A)

which is called aow matrix Similarly, if n = 1, the matrixA reduces to the single column

21
A= . = (301[ail asy e Aml] = {A}

Am1

which is called aolumn matrix or vector. When all the elements of matrix are equal to zero, the matrix
is callednull or zeroand is indicated by. A null matrix serves the same function as zero does in
ordinary algebra. To set all the elementsfoto zero, one writest = 0 in F90, andA = zeros [m, n]
in MATLAB.

If m = n, the matrix is said to bequare

@11 a2 - QAip

apl Ap2 - Gnpn

Before considering some of the matrix algebra implied by the above equation, a few other matrix
types need definition. Aliagonal matrixis a square matrix which has zero elements outside the principal
diagonal. It follows, therefore, that for a diagonal mattjx = 0 whensi # j, and not alle;; are zero. A
typical diagonal matrix may be represented by

ai 0 o 0
0 aso 0

A= :
0 0 Ann

or more concisely ad = diag[ai1a22 - - app]-

©2001 J.E. Akin 170

A unit or identity matrix is a diagonal matrix whose elements are equal to 0 except those located on
its main diagonal, which are equal to 1. Thatdg, = 1 if : = j, anda;; = 0if ¢ # j. The unit matrix
will be given the symbol throughout these notes. An example & & 3 unit matrix is

1 0
I=|0 0 | =diag[111].
0 1

o O = O

A Toeplitzmatrix has constant-valued
matrix.

iagonals. An identity matrix is Toeplitz as is the following

1 -2 3 5
4 1 -2 3
-1 4 1 =2
10 -1 4 1
Note how the values of a Toeplitz matrix’s elements are determined by the first row and the first column.

MATLAB uses the Toeplitz function to create this unusual matrix.
A symmetric matrixs a square matrix whose elements = a;; for all 7, j. For example,

_{12 2 —1-|
A_[_Ql 303 105J

is symmetric: The first row equals the first column, the second row the second column, etc.

An antisymmetricor skew symmetrimatrix is a square matrix whose elemeats = —a;; for all
i, 7. Note that this condition means that the diagonal values of an antisymmetric matrix must equal zero.
An example of such a matrix is

A=

0 2 -1
A=|-2 0 10
1 =10 O

Thetransposeof a matrix A, denoted byA T, is obtained by interchanging the rows and columns.
Thus, the transpose of an x n matrix is ann x m matrix. For example,

so[33] i)

In MATLAB an appended prime is used to denote the transpose of any matrix, sikch-ad’,
whereas in F90 we employ the intrinsic functiBh= transpose (A), or a user defined operator like
B =.t. A which we defined earlier.

If all the elements on one side of the diagonal of a square matrix are zero, the matrix is called a
triangular matrix. There are two types of triangular matrices: (1) an upper triangllarhose elements
below the diagonal are all zero, and (2) a lower triangililawhose elements above the diagonal are all
zero. An example of a lower triangular matrix is

—_

0 00
L=|1 30
5 1 2

A matrix may be divided into smaller arrays by horizontal and vertical lines. Such a matrix is then
referred to as @artitioned matrix and the smaller arrays are callsgbmatrices For example, we can
partition a3 x 3 matrix into four submatrices as shown:

ain a2 | a3 2 1] 3

A= az az | ass _ [A Ap } _ 10 5 | 0
—-——— |- —— Ay Ay | | —————— |- ——

as1 asz2 | ass 4 6 | 10

©2001 J.E. Akin 171

where, in the FO90 and MrLAB colon notation;

O P B i B G
Ap = [Z;z}:{g]:A(LQ,:’))

Ay = [am ap]=[4 6]=A(3,1:2)
Ay = [ags] =[10] = A(3, 3)

It should be noted that the elements of a partitioned matrix must be so ordered that they are compatible
with the whole matrixA and with each other. Thatig,;; andA > must have an equal number of rows.
Likewise, A»; andA.» must have an equal number of rows. Matrides andA»; must have an equal
number of columns. Likewise, foA 1> and A,>. Note thatA,, is a matrix even though it consists of

only one element. Provided the general rules for matrix algebra are observed, the submatrices can be
treated as if they were ordinary matrix elements.

8.2.1 Matrix Algebra

To define what addition and multiplication means for matrices, we need to defmlgelrafor arrays
of numbers so that they become useful to us. Without an algebra, all we have is a sequence of definitions
without the ability to manipulate what they mean!

Addition of two matrices of the same order is accomplished by adding corresponding elements of
each matrix. The matrix additio®@ = A + B (as we write it in F90 and MrLAB), whereA, B andC
are matrices of theameorderm x n can be indicated by the equation

cij =ai; +by;, 1<i<m,1<j<n

wherec;;, a;5, andb;; are typical elements of th€, A, andB matrices, respectively. An example of
matrix addition is

3 0 1 -1 1 -1 2 1 0
2 -1 2|+ 2 5 6 | = 4 -4 8
1 1 1 -3 4 9 -2 5 10

Matrix subtractionC = A — B, is performed in a similar manner.
Matrix addition and subtraction agessociativeandcommutative That is, with the previous defini-
tions for matrix addition and subtraction, grouping and ordering with respect to these operations does not
affect the result.
A+(B+tC)=(A+tB)+C and CtB+A

Multiplication of the matrixA by a scalar is defined as the multiplication of every element of the matrix
by the scalae. Thus, the elements of the prodd8t= cA are given byb;; = ca;j, and is written as
B = C * A inboth F90 and MTLAB. Clearly, scalar multiplication distributes over matrix addition.

We could define special multiplication in the somewhat boring way as the term by term product of
two identical sized matricesC = AB = c¢;; = a;;b;;. This feature is allowed in both F90 and
MATLAB where it is written alC = A*B, andC = A* B, respectively. Although this definition might
be useful in some applications, this choice for what multiplication means in our algebra does not give us
much power. Instead, we define the matrix prodilct AB to mean

p
cij =) aiby;, 1<i<m,1<j<n.
k=1

A andB can be multiplied together amly when the number of columns iA, p, equals the number
of rows in B. When this condition is fulfilled, the matrice® andB are said to beonformablefor
multiplication. Otherwise, matrix multiplication of two matrices cannot be defined. The product of two

©2001 J.E. Akin 172

conformable matriceA andB having ordersn x p andp x n, respectively, yields am x n matrix C.
In MATLAB this is simply written a®C = A*B, where as in F90 one would use the intrinsic function
C = matmul (A, B), or a user defined operator such@s= A.x. B which we defined earlier.
The reason why this definition for matrix multiplication was chosen so that we can concisely represent
a system of linear equations. The verbose form explicitly lists the equations.

01171 +012T2 401323+ -+ A1nTy = C1

2171 +022T2+023L3+ -+ A2 Ty = C2
a31T1+a32T2+assr3+: -+ a3nTyn = C3

An1T1+an2T2+Ap3T3+ -+ AppTn = Cp

where thea;;’s andc¢;’s usually represent known coefficients and ih&s unknowns. To express these
equations more precisely, we define matrices for each of these arrays of numbers and lay them out as a
matrix-vector product equaling a vector.

a1 Qa2 @13 - Qln T C1
G21 Q22 G23 - Q2 T2 C2
a31 azz G33 - A3pn T3 — C3
an1 Ap2 an3 ot Anpn Tn Cn

We thus obtain the more compact matrix foAX = C. A represents the square matrix of coefficients,
X the vector (column matrix) of unknowns, afitlthe vector of known quantities.
Matrix multiplication is associative and distributive. For example,

(AB)C = A(BC)
AB+C) = AB+AC

However, matrix multiplication i:iot commutative. In generah B # BA. Consequently, the order
in which matrix multiplication is specified is by no means arbitrary. Clearly, if the two matrices are
not conformable, attempting to commute the product makes no sense (the matrix multipli8aticsn
not defined). In addition, when the matrices are conformable so that either product makes sense (the
matrices are both square and have the same dimensions, for example), the product cannot be guaranteed
to commute. You should try finding a simple example that illustrates this point. When two matraoes
B are multiplied, the producA B is referred to either aB premultipliedby A, or asA postmultiplied
by B. WhenAB = BA, the matricesA andB are then said to beommutable For example, the unit
matrix I commutes with any square matrix of the same orddr=IA = A.f

The process of matrix multiplication can also be extended to partitioned matrices, provided the indi-
vidual products of submatrices are conformable for multiplication. For example, the multiplication

A Ap } { Bii B } | AuBii +A1Ba; AiiBix + A1xBy

B [A2 By +A2Bar Ay Bia + A3Ba

AB =
{Am Ay B21 B

is possible provided the producss;; B11, A12Bs1, etc. are conformable. For this condition to be ful-
filled, it is only necessary for the vertical partitions X to include a number of columns equal to the
number of rows in the corresponding horizontal partitionBin

The transpose of a product of matrices eqUAIB - -- YZ)T = ZTYT...BTAT. As an example

101
3
210 7

2
TThis result is whyl is called the identity matrix: It is the identity element with respect to matrix multiplication.

3
of matrix multiplication, letB = { 1 J andA = [2 ! 9]; then
2

©2001 J.E. Akin 173

BTAT=[3 1 2] [7 6]

O = N
—_—O =
Il

8.2.2 Inversion

Every (non-singular) square matriXx has aninverse indicated byA—!, such that by definition the
productA A~ is a unit matrixI. The reverse is also true&k ' A = I. Inverse matrices are very useful
in the solution of simultaneous equatioAX = C such as above wherk andC are known ani is
unknown. If the inverse oA is known, the unknowns of thK matrix can be (symbolically) found by
premultiplying both sides of the equation by the inveAse! AX = A~1C so that

X=A"!'C.

In this way, in theory we have “solved” our system of linear equations. To employ this approach, we
must find the inverse of the matriX, which is not any easy task. Despite this computational difficulty,
using matrix algebra to concisely express complicated linear combinations of quantities often provides
much insight into a problem and its solution techniques.

Various methods can be used to determine the inverse of a given matrix. For very large systems of
equations it is probably more practical to avoid the calculation of the inverse and solve the equations by
a procedure calletactorization Various procedures for computing an inverse matrix can be found in
texts on numerical analysis. The inverseof 2 or 3 x 3 matrices can easily be written in closed form
by usingCramer’s rule For a2 x 2 matrix, we have the classic formula, whiob engineering student
should forget.

d -b
a b1 | —c a
c d ad-—be
However, finding the inverse of larger arrays using Cramer’s rule is very inefficient computationally. In
MATLAB an inverse matrix of A is computed ms(A) , but this is only practical for matrices of a small

size, say 100. F90 does not have an intrinsic matrix inversion function but we provide such a function,
namednv , in our operator library.

8.2.3 Factorizations

We have indicated that we will frequently employ matrices to solve linear equation systems ike b,
whereA is a known square matriB is a known vector, anX is an unknown vector. While in theory
the solution is simply the inverse & times the vectoB, z = A(~Y x b, that is computationally the
least efficient way to find the vect®. In practice, one usually uses some form of factorization of the
matrix A. A very common method is to defing to be the product of two triangular matrices, defined
above, sayl. x U = A, whereL is a square lower triangular matrix ailis a square upper triangular
matrix. Skipping the details of thisLU-factorization” we could rewrite the original matrix system as
L x U =z = b, which can be viewed as two matrix identities:

Lxh=05b
Uxx=h,
whereh is a new temporary vector, and where béttand U are much cheaper to compute than the
inverse ofA. We do not need the inverse hfor U since, as triangular matrices, their first or last row
contains only one non-zero term. That allows us to find one term in the unknown vector from one scalar
equation. The processes of recovering the vectors from these two identities is called substitution.
We illustrate this process with a example set of four equations svittndb given as:
1800 600 —360 900
0 4500 -2700 2250
0 —2700 2700 —1890
6300 5250 —1890 3795

©2001 J.E. Akin 174

b’ =[6300 —2250 1890 21405].

TheLU-factorization process mentioned above gives the first of two lower triangular sydtems;

> 60 0 0 0 hy 6300
0 150 0 0 ho —2250

0 —90 36 0 he [T) 1890

210 105 42 —10 | | hy 21405

Observe that the significant difference frofn« z = b is that the first row of this identity has one
equation and one unknown:
60 * hy = 6300

which yieldsh; = 105. This process continues through all the rows solving for one unknbyvim row

k, because all the abovevalues are known. For example, the next row gives 105 + 150 * hy =
—2250, which yieldsh, = —15. This process is known as “forward substitution.” When completed the
substitution yields the intermediate answer:

Rt =[105 —15 15 -30].

Now thath is known we can write the upper triangular identliyx = = h, as:

30 10 -6 15 1 105
0 30 -18 15 To _ —15
0 0 30 —15 zs [15
0 0 0 30 T4 -30
This time the bottom row has only one unknov@®,x x4 = —30, so the last unknown is, = —1.

Working backward up to the next row again there is only one unknown:
0% x5+ —15%(—1) =15

so thatx3 = 0. Proceeding back up through the remaining rows to get all the unknowns is called “back
substitution.” It yields
e'=[4 0 0 —1].

By inspection you can verify that this satisfies the original system of linear equatieng,= b. With a
little more work one can employ matrix multiplication to verify thak U = A. While we have not given
the simple algorithm for computing andU from A, it is widely known as the LU Factorization,”
and is in many texts on numerical analysis. Other common factorizations are the “QR Factorization,” the
“Cholesky Factorization” for a symmetric positive definig and the “SVD Factorization” for the case
whereA is rectangular, or ill-conditioned and one is seeking a best approximatXn to

The factorization process is relatively expensive to compute but is much less expensive that an inver-
sion. The forward and backward substitutions are very fast and cheap. In problems where you have many
differentb vectors (and correspondingvectors, such as time dependent problems), one carries out the
expensive factorization process only once and the executes the cheap forward and back substitution for
eachb vector supplied.

8.2.4 Determinant of a Matrix

Every square matrix, saj, has a single scalar quantity associated with it. That scalar is called the
determinant|A |, of the matrix. The determinantis importantin solving equations and inverting matrices.
A very important result is that the inverge! exists if and only ifA| # 0. If the determinant is zero,

the matrixA (and the equivalent set of equations) is said tgibgular. Simple conditions on a matrix’s
structure can be used to infer the determinant or its properties.

e If two rows or columns are equal, the determinant is zero.

©2001 J.E. Akin 175

e Interchanging two rows, or two columns, changes the sign of the determinant.

e The determinant is unchanged if any row, or column, is modified by adding to it a linear combina-
tion of any of the other rows, or columns.

¢ A singular square matrix may have nonsingular square partitions.

The last two items will become significant when we consider how to apply boundary conditions and how
to solve a system of equations.

8.2.5 Matrix Calculus

At times you might find it necessary to differentiate or integrate matrices. These operations are simply
carried out on each and every element of the matrix. Let the elemgntsf A be a function of a
parametet. Then, the derivative and integral of a matrix simply equals term-by-term differentiation and
integration, respectively.

dA _ dai]'

B = —— o=
dt<—>b” dt ’

/Adt(—)cij:/aijdt, 1<i<m,1<53<n

1<i<m,1<j<n

C

When dealing with functional relations the concept of rate of change is often very important. If we
have a functiory(-) of a single independent variable, saythen we call the rate of change the derivative
with respect tax, which is written asif /dx. Generalizing this notion to functions of more than two
variables, say = f(z,y), we may define two distinct rates of change. One is the function’s rate of
change with respect to one variable with the other held constant. We thus gafired derivatives
Whenz is allowed to vary, the derivative is called thartial derivative with respect te@, and is denoted
by 0f/0z. By analogy with the usual definition of derivative, this partial derivative is mathemtically

defined as o7 o+ Ary) — flo.y)
_ YY) _ T+ AT, Y) — T,y
fo = or Alirgo Az)
A similar definition describes the partial derivative with respecy talenoted byof/0y. The second
notion of rate-of-change is thetal derivative, which is expressed d
of of

df = =——dz + =—d

i oz + oy 4
These definitions can be extended to include a function of any number of independent variables.

Often one encounters a scaladefined by a symmetric squamex n matrix, A, a column vectoB,

and a column vectoX of n parameters. The combination we have in mind has the form

1
u = 5XTAX +X'B+C (8.2)
If we calculate the derivative of the scatawith respect to each;, the result is the column vector
ou
— =AX+B
aX B,

a result that can be verified by expanding Equation 8.2, differentiating with respect targwerX, and
rewriting the result as a matrix product.

8.2.6 Computation with Matrices

Clearly, matrices are useful in representing systems of linear equations and expressing the solution. As
said earlier, we need to be able to express linear equations in terms of matrix notation so that analytic
manipulations become easy. Furthermore, calculations with linear equations become easy iflive can
rectly express our matrix formulas in terms of programs. This section describes programming constructs
for the simple matrix expressions and manipulations covered in this chapter.

©2001 J.E. Akin 176

| MATLAB | C++ Fo0

Pre-allocate A(100)=0 int A[100]; @ integer A(100)
linear array
Initialize to a| for j=1:100 % slow for (j=0; j<100; j++) A=12
constant value of 4012 Afjl=12;
12 % better way

A=12*ones(1,100)
Pre-allocate A=ones(10,10) int A[10][10]; integer A(10,10)
two-dimensional
array

aC++ has a starting subscript of 0, but the argument in the allocation statement is the array’s size.

Table 8.12 Array initialization constructs.

| Action | MATLAB | C++ | F90
Define A=zeros(2,3) @ int A[2][3]; integer, dimension (2,3)::A
size
Enter A=[1,7,2; int ARIBE | A(L,)=(/1,7,-2])
. 1,72}, Y=
rows 3, 4, 6]; laae] A(2,)=(/3,4,6/)
};

a0ptional in MaTLAB, but improves efficiency.

Table 8.13 Array initialization constructs

In most languages, we must express the fact that a variable is an ordered array of numbers—a
matrix—rather than a scalar (or some other kind of variable). Slectarationstatements usually occur
at the beginning of the program or function. Table 8.12 shows the declaration of an integer array for
our suite of programming languages. Both Fortran and C++ require you to specify the maximum range
of each subscript of an array before the array or its elements are used. Such range specification is not
requiredby MATLAB, but pre-allocating the array space can drastically improve the speedmfAd,
as well as making much more efficient use of the available memory. If you do not pre-allosate i
arrays, the interpreter must check at each step if a position in a row or column is larger than the current
maximum. If so, the maximum value is increased and the memory found to store the new element. Thus,
failure to pre-allocate MTLAB arrays is permissible but inefficient.

Array initialization is concisely expressed in both Fortran andThMAB; in C++, you must write
a small program to initialize an array to a nonzero vdlué.an array contains a variety of different
numbers, we can concisely express the initialization; again, in C++, we must explicitly write statements
for each array element.

An Aside: Matrix Storage
Most computer languages do not make evident how matrices are stored. More frequently than you might
think, it becomes necessary to know how an array is actually stored in the computer's memory and
retrieved. The procedure both Fortran and™AB use to store the elements of an array is known as
column major order all the elements of the first column are stored sequentially, then all of the second,
etc. Another way of saying this is that the first (left most) subscript ranges over all its values before the
second is incremented. After the second subscript has been incremented then the first again ranges over
all its values. In C++row major orderis used: The first row of an array is stored sequentially, then the
second, etc. Clearly, translating programs from Fortran to C++ or vice versa must be done with care.

However, the above knowledge can be used to execute some operations more efficiently. For example,
the matrix addition procedure could be writtencas= ay + b, 1 < k < m x n. One circumstance

tGlobal arrays-those declared outside of any function definitieare initialized to zero in many versions of C++. Array
declared within the scope of a function have no predefined values.

©2001 J.E. Akin 177

| MATLAB | C++ | Fo0 |

Addition C=A+B for (i=0; i<n; i++) { C=A+B
C=A —+ B for ?:O' j<.n;. j++ﬁ_ {
}C =AL+BIL;
Multiplicat }
ultiplication C=A*B for (i=0; i<n; i++) C=matmul(A,B)
C=AB for =0; J<n j++) { {
for %< 0; k<n; k++) {
Clili += A[I][k]*B K10l
}
Scalar
multiplication | C=a*B for (i=0; i<n; i++) { C=a'B
for (j=0;
C=aB r}?.]u] -<g*BEf[J)] {
}
Matrix
inverse . a _ a
B— A-! B=inv(A) B=inv(A)

aNeither C++ nor FO0 have matrix inverse functions as part of their language definitions nor as part of standard collections
of mathematical functions (like those listed in Table 4.7). Instead, a special function, usually drawn from a library of numerical
functions, or a user defined operation, must be used.

Table 8.14 Elementary matrix computational routines (fox n matrices)

where knowing the storage format becomes crucial is extracting submatrices in partitioned arrays. Such
a Fortran subroutine would havedonension the arrays with a single subscript.

Expressing the addition, subtraction, or multiplication of arrays in Fortranarmns is concise and
natural. Explicit programs must be written in C++ to accomplish these calculations. Table 8.14 displays
what these constructs are for the special case of square matrices \naths.

8.3 Exercises

1. Often it is necessary to check computer programs that invert matrices. One approach is use
test matrices for which the inverse is known analytically. Few such matrices are known, but one is the
following n x n matrix.

[2 -3 0 0 0 35 n n—-1 n—2 - 2 1
-+ 1 -1 0 0 0 n-1 n n-1 3 2
0 —% 1 —% 0 0 B n—2 n-—1 n 4
0 0 _% 1 _% 2 n n—1
1 1 2
[2oz O 0 -3 27:;:2_ L 1 R

Develop two routines that will create each of these two matrices for a givatue, and test them with
a main program that usesatmul to compute their matrix product. The result should be the identity
matrix.

©2001 J.E. Akin 178

2. The numerical accuracy in calculating an inverse is always an issue: To what extent can you
believe the accuracy of the numbers that computer programs calculate. Because of the finite precision
used to represent floating point numbers, floating point calculations can only rarely yield exact answers.
We want to empirically compute the difference between the inverse of the first matrix in the previous
exercise by using a library inversion routine and compatre its result with the exact answer. Because the
error varies throughout the matrix, we need to summarize the error with a single quantity. Two measures
are routinely used: the peak absolute emeix; ; |a;; — b;j| and the root-mean-squared (rms) error

\/# Zi,j (aij — bij)z.’f The first captures the biggest difference between the elements of two matrices,

and the second summarizes the error throughout the entire difference. Clearly, the peak absolute error
is always larger than the rms error. Comparing these two error measures provides some insight into the
distribution of error: If the two are comparable, the errors have about the same size; if not, the errors
deviate greatly throughout the matrix.

3. Combine the intrinsic array features of F90 with the concepts of OO classes to create a Vector
Class that is built around a type that has attributes consisting of the integer length of a vector and an array
of its real components. Provide members to construct vectors, delete the arrays, real vectors, list vectors,
and carry out basic mathematics operations. Overload the operators +, -, *, =, and ==. Avoid writing any
serial loops.

4. Extend the above Vector Class concepts to a Sparse Vector Class where it is assumed that most
of the values in the vector are zero and for efficiency only the non-zero entries are to be stored. This
clearly exceeds the intrinsic array features of F90 and begins to show the usefulness of OOP. The defined
type must be extended to include an integer array that contains the location (row number) of the non-zero
values. In addition to changing the input and output routines to utilize the extra integer position list, all
the mathematical member functions such as addition will have to be changed so that the resulting vector
has non-zero terms in locations that are a union of the two given location sets (unless the operation creates
new zero values). Use the concept of logical array masks in computing the dot product. Avoid writing
any serial loops.

tThe 1/n%term occurs in this expression because that equals the number of terms in the sum. The rms error is used frequently
in the practice to measure error; you average the squared error across the dataset and evaluate the square-root of the result.

©2001 J.E. Akin 179

180

Chapter 9

Advanced Topics

9.1 Templates

One of our goals has been to develop software that can be reused for other applications. There are some
algorithms that are effectively independent of the object type on which they operate. For example, in a
sorting algorithm one often needs to interchangesvap, two objects. A short routine for that purpose
follows:

subroutine swap _integers (X, y)
implicit none
integer, intent(inout) :: X, y
integer L temp
temp = X
X =y
y = temp
end subroutine swap _integers

Observe that in this form it appears necessary to have one version for integer arguments and another for
real arguments. Indeed we might need a different version of the routine for each type of argument that
you may need to swap. A slightly different approach would be to write our swap algorithm as:

subroutine swap _objects (X, y)
implicit none
type (Object), intent(inout) :: X, y
type (Object) ;o temp
temp = x
X =y
y = temp
end subroutine swap _objects

which would be a single routine that would work for a@pject , but it has the disadvantage that one
find a way to redefine th@bject type for each application of the routine. That would not be an easy
task. (While we will continue with this example with the algorithm in the above forms it should be noted
that the above approaches would not be efficiextihdy were very large arrays or derived type objects.
In that case we would modify the algorithm slightly to employ pointers to the large data items and simply
swap the pointers for a significant increase in efficiency.)

Consider ways that we might be able to generalize the above routines so that they could accept and
swap any specific type of arguments. For example, the first two versions could be re-written in a so called
template form as:

subroutine swap _Template$ (x, y)
implicit none
Template$, intent(inout) :: X, y
Template$ o temp
temp = x
X =y
y = temp
end subroutine swap _Template$

In the above template the dollar sign ($) was includes in the “wild card” because while it is a valid member
of the F90 character set it is not a valid character for inclusion in the name of a variable, derived type,
function, module, or subroutine. In other words, a template in the illustrated form would not compile, but

©2001 J.E. Akin 181

such a name could serve as a reminder that its purpose is to produce a code that can be compiled after the
“wild card” substitutions have been made.

With this type of template it would be very easy to use a modern text editor to do a global substitution
of any one of the intrinsic typesharacter, complex, double precision, integer, logi-
cal, orreal forthe “wild card” keywordTemplate$ to produce a source code to swap any or all of
the intrinsic data types. There would be no need to keep up with all the different routine names if we
placed all of them in a single module and also created a geinatiface to them such as:

module swap _library
implicit none

interface swap ! the generic name
module procedure swap _character, swap _complex
module procedure swap _double precision, swap _integer
module procedure swap _logical, swap _real

end interface

contains
subroutine swap _characters (x, V)
end subroutine swap _characters

subroutine swap _ . . .

end module swap _library

The use of a text editor to make such substitutions is not very elegant and we expect that there may
be a better way to pursue the concept of developing a re-useable software template. The concept of a text
editor substitution also fails when we go to the next logical step and try to use a derived type argument
instead of any of the intrinsic data types. For example, if we were to replace the “wild card” with our

previoustype (chemical _element) that would create:
subroutine swap _type (chemical _element) (x.y)
implicit none
type Echemical _elementg, intent (inout)::x,y
type (chemical _element :temp
temp = X
X =y
y = temp
end subroutine swap _type (chemical _element)

This would fail to compile because it violates the syntax for a valid function or subroutine name, as well
as the end function or end subroutine syntax. Except for the first and last line syntax errors this would be
a valid code. To correct the problem we simply need to add a little logic and omit the chargaters

() when we create a function, module, or subroutine name that is based on a derived type data entity.
Then we obtain

subroutine swap _chemical _element (x,y)
implicit none
type Echemical _elementg, intent (inout)::x,y
type (chemical _element temp
temp = X
X =y
y = temp
end subroutine swap _chemical _element

which yields a completely valid routine.

Unfortunately, text editors do not offer us such logic capabilities. However, as we have seen, high
level programming languages like C++ and F90 do have those abilities. At this point you should be able
to envision writing gore-processor ~ program that would accept a file of template routines, replace the
template “wildcard” words with the desired generic forms to produce a moduieaater file con-
taining the expanded source files that can then be brought into the desired programindgbidan or
use statement. The C++ language includes a template pre-processor to expand template files as needed.
Some programmers criticize F90/95 for not offering this ability as part of the standard. A few C++ pro-
grammers criticize templates and advise against their use. Regardless of the merits of including template
pre-processors in a language standard it should be clear that it is desirable to plan software for its efficient
reuse.

With F90 if one wants to take advantage of the concepts of templates then the only choices are to carry
out a little text editing or develop a pre-processor with the outlined capabilities. The former is clearly
the simplest and for many projects may take less time than developing such a template pre-processor.
However, if one makes the time investment to produce a template pre-processor one would have a tool

©2001 J.E. Akin 182

that could be applied to basically any coding project. In the following sections we will give one example
of an F90 template pre-processor and demonstrate its application. Reviewing this approach you will
probably notice alternate ways to solve the same problem.

9.2 Subtyping Objects (Dynamic Dispatching)

One polymorphic feature missing from the Fortran 90 standard that is common to most object oriented
languages is called run-time polymorphisndgnamic dispatching(This feature is expected in Fortran
200X as an "extensible” function.) In the C++ language this ability is introduced in the so-called " virtual
function”. To emulate this ability is quite straightforward in F90 but is not elegant since it usually requires
a group of if-elseif statements or other selection processes. It is only tedious if the inheritance hierar-
chy contains many unmodified subroutines and functions. The importance of the lack of a standardized
dynamic dispatching depends on the problem domain to which it must be applied. For several applica-
tions demonstrated in the literature the alternate use of subtyping has worked quite well and resulted in
programs that have been shown to run several times faster than equivalent C++ versions.

We implement dynamic dispatching in F90 by a process often called subtyping. Two features must be
constructed to do this. First, a pointer object, which can point to any subtype member in an inheritance
hierarchy, must be developed. Remember that F90 uses the operatao’ assign pointers to objects,
and any object to be pointed at must have the TARGET attribute. Second, we must construct a (dynamic)
dispatching mechanism to select the single appropriate procedure to execute at any time during the dy-
namic execution of the program. This step is done by checking which of the pointers actually points to
an object and then passing that (unique) pointer to the corresponding appropriate procedure. In F90 the
necessary checking can be carried out by using the ASSOCIATED intrinsic. Here, an if-elseif or other
selection method is developed to serve as a dispatch mechanism to select the unique appropriate proce-
dure to be executed based on the actual class referenced in the controlling pointer object. This subtyping
process is also referred to as implementimgplymorphic classOf course, the details of the actual dis-
patching process can be hidden from the procedures that utilize the polymorphic class. The polymorphic
class knows only about the interfaces and data types defined in the hierarchy and nothing about how those
procedures are implemented.

This process will be illustrated buy creating a specific polymorphic class, in this case called
Is _A_Member_Class , which has polymorphic procedures named;, assign ,anddisplay . They
will construct a new instance of the object, assign it a value, and list its components. The minimum ex-
ample of such a process requires two members and is easily extended to any number of member classes.
We begin by illustrating a short dynamic dispatching program and then defining each of the subtype
classes of interest. The validation of this dynamic dispatching through a polymorphic class is shown in
Fig. 9.1. There a target is declared for reach possible subtype and then each of them is constructed and
sent on to the other polymorphic functions. The results clearly show that different display procedures
were used depending on the class of object supplied as an argument. It is expected that the new Fortran
200X standard will allow such dynamic dispatching in a much simpler fashion.

The first subtype is a clasglember_1 _Class , which has two real components and the encapsulated
functionality to construct a new instance and another to accept a pointer to such a subtype and display
related information. It is shown in Fig. 9.2. The next subtype cl&ssnber_2_Class , has three
components: two reals and one of tygember_1. It has the same sort of functionality, but clearly must
act on more components. It has also inherited the functionally fromi#ingber_1 _Class ; as displayed
in Fig. 9.3.

The polymorphic clasds _A_Member_Class , is shown in Fig. 9.4. It includes all of the encap-
sulated data and function’s of the above two subtypes by includingdkeistatements. The necessary
pointer object is defined as & _ A_Member type that has a unique pointer for each subtype member
(two in this case). That s, at any given time during execution it will associate only one of the pointers in
this list with an actual pointer object, and the other pointers are nullified. That is why this dispatching is
referred to as "dynamic”. It also defines a polymorphic interface to each of the common procedures to be
applied to the various subtype objects. In the polymorphic function assign the dispatching is done very
simply. First, all pointers to the family of subtypes are nullified, and then the unique pointer component

©2001 J.E. Akin 183

1] program main
2] use Is _A_Member_Class
3] implicit none
4
5 type (Is _A_Member) I generic _member
6 type (member _13, target :: pt _to _memh_1
7 type (member _2), target :: pt _to _memh_2
8 character(len=1) :: c
10 c="A
11 call new (pt _to _memh_1, 1.0, 2.0)
12 call assign (generic —member, pt _to _memh_1)
%2 call display _members (generic _member, ¢)
15 c='B
16 call new (pt _to _memb_2, 1.0, 2.0, 3.0, 4.0)
17 call assign (generic _member, pt _to _memh_2)
18 call display _members (generic _member, c)
19
20] end program main
21] ! running gives
22] ! display —_memh_1 A
23] ! display _memh_2 B
Figure 9.1 Test of Dynamic Dispatching
1] Module Member _1_Class
2 implicit none
3 type member _1
4 real :: real _1, real _2
5 end type member _1
6
g contains
9 subroutine new _member_1 (member, a, b)
10 real, intent(in) :: a, b
11 type (member _1) : member
12 member%real _1 = a ; member%real _2 = b
13 end subroutine new _member_1
14
15 subroutine display _memh_1 (pt _to _memh_1, c)
16 type (member _1), pointer : pt _to _memh_1
17 character(len=1), intent(in) :: ¢
18 print *, “display —_memh_1 ', ¢
19 end subroutine display —_memhb_1
20
21] End Module Member _1_Class

Figure 9.2 The First Subtype Class Member

to the subtype of interest is set to point to the desired member. The dispatching process for the display
procedure is different. It requires an if-elseif construct that contains calls to all of the possible subtype
members (two here) and a failsafe default state to abort the process or undertake the necessary exception
handling. Since all but one of the subtype pointer objects have been nullified it employs the ASSOCI-
ATED intrinsic function to select the one, and only, procedure to call and passes the pointer object on to
that procedure. In F90 a pointer can be nullified by using the NULLIFY statement, while F95 allows the
alternative of pointing at the intrinsic NULL function with returns a disassociated pointer. The NULL
function can also be used to define the initial association status of a pointer at the point it is declared.
That is a better programming style.

The are other approaches for implementing the dynamic dispatching concepts. Several examples are
give in the publications by the group Decyk, Norton, and Szymanski (1995, 1997, 1999) and on Prof.
Szymanski's Web site.

9.3 Non-standard Features

Elsewhere in this work only features of Fortran included in the 1995 standard have been utilized. It

is common for compiler developers to provide addition enhancements, that are hardware or environment
specific, and for the most useful of those features to appear in the next standard release. Compiler releases
by Cray(@© Digitial © and Silicon Graphic&) computers are examples of versions with extensive en-
hancements. Some compilers, like the Digi@Nisual Fortran© are designed to develop applications

©2001 J.E. Akin 184

1] Module Member _2_Class

2 Use Member _1_class

3 implicit none

4 type member _2

5 type (member _1) =r _1_2

6 real :: real _3, real _4

; end type member _2

9] contains

10

11 subroutine new _member_2 (member, a, b, c, d)
12 real, intent(in) :: a, b, c, d

13 type (member _2) :: member

14 call new _member_1 (member%r _1_2, a, b)
15 member%real _3 = c ; member%real _4 = d
16 end subroutine new _member_2

17

18 subroutine display _memh.2 (pt _to _memh_2, c)
19 type (member _2), pointer :: pt _to _memh_2
20 character(len=1), intent(in) :: c

21 print *, 'display _memh_2 ', ¢

%g end subroutine display _memh_2

24] End Module Member _2_Class

Figure 9.3 The Second Subtype Class Member

for the Microsoft(© Windows(© system and contain library modules for "standard” graphical displays
via QuickWin(© for dialog routines to the Graphical User Interface (GUI), for interfacing with multiple
programming languages or the operation system, and for multiple "thread” operations. Threads are not
currently in the F90 standard. They allow for response to the user interaction with any of a set of multiple
buttons or dials in an active GUI.

Fortran 90 is a subset of the High Performance Fortran (HPF) standard that has been developed for
use on massively parallel computers. We have not discussed those enhancements.

Even without these special enhancements the OOP abilities of F90 provide an important tool in en-
gineering and scientific programming. In support of that position we close with a quote from computer
scientist Professor Boleslaw K. Szymanski’s Web page on High Performance Object-Oriented Program-
ming in Fortran 90 where his group concludes: "All of our Fortran 90 programs execute more quickly
than the equivalent C++ versions, yet the abstraction modeling capabilities that we needed were compa-
rably powerful.”

©2001 J.E. Akin 185

1] Module Is _A_Member_Class

2] Use Member _1_Class ; Use Member _2_Class

3 implicit none

4

5 type Is _A_Member

6 private

7 type Emember _13, pointer :: pt _to _memh_1

8 type (member _2), pointer :: pt _to _memh_2 ! etc for others
8 end type Is _A_Member

1

11 interface new

12 module procedure new _member_1

13 module procedure new _member_2 ! etc for others
14 end interface

15

16 interface assign

17 module procedure assign _memh_1

18 module procedure assign _memh_2 ! etc for others
19 end interface

20

21 interface display

22 module procedure display _memh_1

23 module procedure display _memh_2 ! etc for others
24 end interface

25

26] contains

27

28 subroutine assign _memh_1 (Family, member)

29 type gmember _1), target, intent(in) : member

30 type _A_ Member) intent(out) :: Family

31 call nullify _Is _A_Member (Family) ! nuII|fy all
32 Family%pt _to _memh_1 => member

33 end subroutine assign _memh_1

34

35 subroutine assign _memh_2 (Family, member)

36 type gmember _2), target, intent(in) : member

37 type _A_Member), intent(out) :: Family

38 call nullify _Is _A_Member (Family) ! nuII|fy all
39 Family%pt _to _memh_2 => member

40 end subroutine assign _memh_2 ! etc for others

41

42 subroutine nullify s _A_Member (Family)

43 type (Is —A_ Member) intent(inout) :: Family

44 nullify (Family%pt _to _memh_1

45 nullify (Family%pt _to _memh_2) ! etc for others
46 end subroutine nullify —_Is _A_Member

47

48 subroutine display _members (A _Member, c)

49 type (Is _A_Member), intent(in) :: A _Member
50 character(len=1), intent(in) :: c

51

52 ! select the one proper member

53 if (associated (A _Member%pt_to _memh_1)) then
54 call display (A _Member%pt_to _memh_1, c)
55 else if (associated (A _Member%pt_to _memh_2)) then
56 call display (A _Member%pt_to _memh_2, c) ! etc for others
57 else ! default case

58 stop 'Error, no member defined in Is _A_Member_Class’
59 end i

60 end subroutine display _members

61] End Module Is _A_Member_Class

Figure 9.4 The Polymorphic Class for Subtypes

©2001 J.E. Akin 186

Appendix A

Bibliography

10.

11.

12.

13.

14.
15.

16.

. Adams, J.C., Brainerd, W.S., Matrtin, J.T., Smith, B.T. and Wagener,khttran 90 Handbook:

Complete ANSI/ISO Referendetertext Publications, McGraw-Hill Book Company, New York,
1992.

. Akin, J.E. “Object-oriented Programming via Fortran 9Bigineering Computationd 6(1) 26-

48, 1999.

. Angell, 1.O. and Griffith, G.High Resolution Computer Graphics Using Fortran, Macmillan,

London, 1987.

. Bar-David, T.Object-Oriented Design for C++Prentice Hall, 1993.
. Barton, J.J. and L.R. Nackma&yientific and Engineering C++Addison Wesley, 1994.

. Cary, J.R., S.G. Shasharina, J.C. Cummings, J.V.W. Reynders, and P.J. Hinker, “A Comparison of

C++ and Fortran 90 for Object-Oriented Scientific Programmi@ginputer Phys. Comml05,
20, 1997.

. Coad, P. and E. Yourdo®bject Oriented DesigrPrentice Hall, 1991.

. Decyk, V.K., Norton,C.D. and B.K. Szymanski, “Expressing Object-Oriented Concepts in

Fortran90,”ACM Fortran Forum 16,(1), April 1997.

. Decyk, V.K., Norton,C.D. and B.K. Szymanski, “How to Express C++ Concepts in Fortran90,”

Scientific Programmings, 363—390, 1997.

Dubois-Rlerin, Y. and T. Zimmermann, “Object-oriented finite element programming: 1ll. An
efficient implementation in C++Comp. Meth. Appl. Mech. Engi08, 165-183, 1993.

Dubois-Rlerin, Y. and P. Pegon, “Improving Modularity in Object-Oriented Finite Element Pro-
gramming,”"Communications in Numerical Methods in Engineeyit, 193—198, 1997.

Filho, J.S.R.A. and P.R.B. Devloo, “Object Oriented Programming in Scientific Computations,”
Engineering Computation$(1), 81-87, 1991.

Gray, M.G., and R.M. Roberts, “Object-Based Programming in FortrarCaftputers in Physi¢s
11, 355, 1997.

Gehrke, W.Fortran 90 Language GuideéSpringer, London, 1995.

George, A. and J. Liu “An Object-Oriented Approach to the Design of a User Interface for a Sparse
Matrix Package”, em SIAM J. Matrix Anal. Appl., 20(4), 953-969, 1999.

Graham, 1.Qbject Oriented Method#\ddison-Wesley, 1991.

©2001 J.E. Akin 187

17.
18.
19.
20.
21.
22.

23.

24,

25.

26.

27.

28.

29,

30.

31.

32.

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

Hahn, B.D.Fortran 90 for Scientists and Enginee&dward Arnold, London, 1994,
Hanly, J.R.Essential C++ for Engineers and Scientiségddison-Wesley, 1997.
Hanselman, D. and Littlefield, BVlastering Matlab 5Prentice Hall, 1998.
Hubbard, J.RRrogramming with C++ McGraw Hill, 1994.

Kerrigan, J.Migrating to Fortran 9Q O’Reilly & Associates, Sebastopol, CA, 1993.

Koelbel, C.H., Loveman, D.B., Schreiber, R.S., Steele, G.L., Jr. and Zosel, Wé&High Perfor-
mance Fortran HandbogMIT Press, Cambridge, MA, 1994.

Machiels, L. and M.O. Deville, “Fortran 90: On Entry to Object Oriented Programming for the
Solution of Partial Differential Equations®CM Trans. Math. Softwar3(1), 32—49, Mar. 1997.

Mossberg, E. K. Otto, and M. Thune, “Object-Oriented Software Tools for the Construction of
PreconditionersScientific Programming, 285-295, 1997.

Nielsen, K.,Object-Oriented Development with C++4nternational Thomson Computer Press,
1997.

Norton, C.D., B.K. Szymanski, and V.K. Decyk, “Object Oriented Parallel Computation for Plasma
Simulation”, em Comm. ACM, 38(10), 88, 1995.

Norton, C.D., V.K. Decyk, and B.K. Szymanski, “High Performance Object-Oriented Scientific
Programming in Fortran 90", em Proc. Eighth SIAM Conf. on Parallell Processing for Scientific
Programming, (Ed. Heath et. al.), March 1997.

Pratap, R Getting Started with MatlalSaunders College Publishing, Ft. Worth, TX, 1996.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, BIBmerical Recipes in Fortran
77, Cambridge University Press, 1989.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, BlBmerical Recipes in Fortran
90, 2nd ed., Cambridge University Press, 1996.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy and W. Lore@aect Oriented Modeling and
Design Prentice Hall, 1991.

Thomas, P. and Weedon, Rbject-Oriented Programming in EiffeAddison-Wesley, 1995.
Links to World Wide Web sites (as of 2001, subject to change):

http://blas.mcmaster.ca/ fred/oo.html
http://citeseer.nj.nec.com/242268.html
http://csepl.phy.ornl.gov/CSEP/PL/PL.html
http://epubs.siam.org/sam-bin/dbg/article/31773
http://kanaima.ciens.ucv.ve/hpf/HTMLNotesnode29.html
http://mis.ucd.ie/courses/mms402/prentice.htm
http://webserv.gsfc.nasa.gov/ESS/annual.reports/ess98/cdn.html
http://www.amath.washington.edu/ If/software/CompCPB0SciOOP.html
http://www.arithmetica.ch/Oberon/CFORTRANOberon.nhtml

http://www.cs.rpi.edu/ szymansk/OOF90

©2001 J.E. Akin 188

43,
44,
45,
46,
47.

http:/lwww.nasatech.com/Briefs/Mar98/NP0O20180.html
http://www.owlnet.rice.edu/ mech517/F9@ocs/EC_oop_f90.pdf
http://www.ssec.wisc.edu/ robert/Software/F90-ObjOrientProg.html
http://mwww.tdb.uu.se/ ngssc/OOP00/module2/

http://www.ticra.dk/ooa.htm

©2001 J.E. Akin 189

©2001 J.E. Akin 190

Appendix B

Fortran 90 Overview

This overview of Fortran 90 (F90) features is presented as a series of tables that illustrate the syntax and
abilities of F90. Frequently comparisons are made to similar features in the C++ and F77 languages and
to the Matlab environment.

These tables show that F90 has significant improvements over F77 and matches or exceeds newer
software capabilities found in C++ and Matlab for dynamic memory management, user defined data
structures, matrix operations, operator definition and overloading, intrinsics for vector and parallel pro-
cessors and the basic requirements for object-oriented programming.

They are intended to serve as a condensed quick reference guide for programming in F90 and for
understanding programs developed by others.

B.1 List of Language Tables

1L e 9
12 e 13
A1 e 52
A2 e 53
A3 e 53
A4 e 54
o 54
4.6 56
AT 56
A8 e 57
e 59
400 L 62
A0 62
A2 62
A3 63
A4 64
A5 e 65
416 L 65
AT e 65
418 66
A9 e 66
420 e 68
A21 e 68
A22 e 69
A23 72
A24 e 74

©2001 J.E. Akin 191

425 78
A26 78
A27 79
A28 82
429 e 82
430 82
A3L 83
A.32 83
A.33 87
A34 e 88
L 104
B 2 106
LT 108
B e 108
LS 109
LS 109
L 110
L5 110
LS 111
5.0 L 111
1 156
B 2 156
8.3 e 158
A 158
S 160
T 162
8.8 163
8.0 164
8.10 Intrinsic Functions Allowing Logical Mask Control 165
T 166
8.1 177
813 177
8.4 178

B.1 Commentsyntax e 3
B.2 Intrinsicdatatypesofvariables 3
B.3 Arithmetic operators 3
B.4 Relational operators (arithmetic and logical) 4
B.5 Precedence peckingordero 4
B.6 Colon Operator Syntax and its Applications
B.7 Mathematical functions

5
B.8 Flow Control Statements e 6
B.9 Basicloopconstructs e 6
B.10IF ConStructs o e e 7
B.11 NestedrF Constructs 7
B.12 LogicallF-ELSE Constructs 7
B.13 LogicallF-ELSE-IF Constructs 7

B.14 Case Selection Constructs

B.15 F90 Optional Logic Block Names 8
B.16 GO TBreak-outof NestedLoOpS i 8

B.17 Skipa SingleLoop Cycle 8
B.18 Aborta Single Loop 9

©2001 J.E. Akin 192

B.19 F90DG Named for Control
B.20 Looping While a ConditionisTrue
B.21 Functiondefinitions
B.22 Arguments and return values of subprograms
B.23 Defining and referring to global variables
B.24 Bit Function IntrinsSics
B.25 The ACSII Character Set e e
B.26 F90 Character Functions
B.27 How to type non-printingcharacters.
B.28 Referencing Structure Components.. o
B.29 Defining New Types of Data Structure
B.30 Nested Data Structure Definitions
B.31 Declaring, initializing, and assigning components of user-defined datatypes
B.32 F90 Derived Type Component Interpretation.
B.33 Definition of pointers and accessing theirtargets
B.34 Nullifing a Pointer to Break Associationwith Target
B.35 Special Array Characters e
B.36 Array Operations in Programming Constructs
B.37 Equivalent Fortran 90 and MtLAB Intrinsic Functions
B.38 Truncating Numbers
B.39 FOOWHERECONSIIUCES o o o e e e e e e
B.40 F90 Array Operators with Logic Mask Control
B.41 Array initializationconstructs
B.42 Array initializationconstructs
B.43 Elementary matrix computational routines
B.44 Dynamic allocation of arrays and pointers
B.45 Automatic memory management of local scopearrays.
B.46 F90 Single Inheritance Form
B.47 F90 Selective Single Inheritance Form,
B.48 F90 Single Inheritance Form, with Local Renaming
B.49 F90 Multiple Selective Inheritance with Renaming.

©2001 J.E. Akin 2

| Language | Syntax | Location |

MATLAB % comment (to end of line) anywhere
C [*comment*/ anywhere
F90 ! comment (to end of line) anywhere
F77 * comment (to end of line) column 1

Table B.1: Comment syntax.

Storage | MATLAB? | C++ | F90 | F77
byte char character:: character
integer int integer:: integer
single precision float real: real
double precision double | real*8: double precision
complex b | complex: complex
Boolean bool logical:: logical
argument parameter:: parameter
pointer * pointer::
structure struct type::

a8MATLAB 4 requires no variable type declaration; the only two distinct types ATIMB are strings and reals (which include
complex). Booleans are just Os and 1s treated as realsLM 5 allows the user to select more types.
bThere is no specific data type for a complex variable in C++; they must be created by the programmer.

Table B.2 Intrinsic data types of variables.

| Description | MATLAB? | C++ | Fortran®
addition + + +
subtractiof - - -
multiplication * and.* * *
division / and./ / /
exponentiation © and.” pow® | **
remainder %
increment ++
decrement --
parentheses (expres-() 0 0
sion grouping)

aWhen doing arithmetic operations on matrices iIATMAB, a period (: ') must be put before the operator if scalar arithmetic
is desired. Otherwise, MrLAB assumes matrix operations; figure out the difference betw€eand ‘.* '. Note that since matrix
and scalar addition coincide, na*’ operator exists (same holds for subtraction).

bFortran 90 allows the user to change operators and to define new operator symbols.

CIn all languages the minus sign is used for negation (i.e., changing sign).

din C++ the exponentiation? is calculated by functiorpow(z,).

Table B.3: Arithmetic operators.

©2001 J.E. Akin 3

| Description | MATLAB [C++ [F90 [F77 |

Equal to == == == .EQ.

Not equal to "= I= = .NE.

Less than < < < LT.

Less or equal <= <= <= LE.

Greater than > > > .GT.

Greater or equal >= >= >= .GE.
Logical NOT ~ ! .NOT. .NOT.
Logical AND & && | .AND. .AND.
Logical inclusive OR ! Il .OR. .OR.
Logical exclusive OR xor XOR. XOR.
Logical equivalent == == .EQV. .EQV.

Logical not equivalent "= I= .NEQV. | .NEQV.

Table B.4: Relational operators (arithmetic and logical).

MATLAB C++ Operators | F90 Operators* | F77 Operators
Operators
0 0no->. 0 0
+ - | ++ - + *% *%
- * & (type)
sizeof
* * | % * *
+ .b + .b + b + b
< <= > >= << >> I/l I/l
== "= < <= > => == /= < <= > .EQ. .NE.
>= .LT. .LE.
.GT. .GE.
- == I= .NOT. .NOT.
& && .AND. .AND.
| Il .OR. .OR.
= | .EQV. .NEQV. .EQV. .NEQV.
?:
= 4= = *= |=
%= &= "= |=
<<= >>=

aUser-defined unary (binary) operators have the highest (lowest) precedence in F90.
bThese are binary operators representing addition and subtraction. Unary operatats have higher precedence.

Table B.5: Precedence pecking order.

B = Beginning,E = Ending,l =Increment

| Syntax | F90 | MATLAB | | Use | FO0 | MATLAB |
Default B:E:l B:ILE Array subscript ranges yes yes
>B B: B: Character positions in a string yes yes
<E E E Loop control no yes
Full range : : Array element generation no yes

Table B.6: Colon Operator Syntax and its Applications.

©2001 J.E. Akin 4

Description | MATLAB | C++ F90 F77
exponential exp(x) exp(x) exp(x) exp(x)
natural log log(x) log(x) log(x) log(x)
base 10 log log10(x) log10(x) log10(x) log10(x)
square root sqrt(x) sqrt(x) sqrt(x) sqrt(x)
raise to power%") X.r pow(X,r) X**r X**r
absolute value abs(x) fabs(x) abs(x) abs(x)
smallest integesx ceil(x) ceil(x) ceiling(x)
largest integexx floor(x) floor(x) floor(x)
division remainder | rem(x,y) fmod(x,y) mod(x,y) mod(x,y)
modulo modulo(x,y) 2
complex conjugate | conj(z) conjg(z) conjg(z)
imaginary part imag(z) imag(z) aimag(z)
drop fraction fix(x) aint(x) aint(x)
round number round(x) nint(x) nint(x)
cosine cos(X) cos(X) cos(X) cos(X)
sine sin(x) sin(x) sin(x) sin(x)
tangent tan(x) tan(x) tan(x) tan(x)
arc cosine acos(x) acos(x) acos(x) acos(x)
arc sine asin(x) asin(x) asin(x) asin(x)
arc tangent atan(x) atan(x) atan(x) atan(x)
arc tangenit atan2(x,y) atan2(x,y) atan2(x,y) atan2(x,y)
hyperbolic cosine cosh(x) cosh(x) cosh(x) cosh(x)
hyperbolic sine sinh(x) sinh(x) sinh(x) sinh(x)
hyperbolic tangent | tanh(x) tanh(x) tanh(x) tanh(x)
hyperbolic arc cosing acosh(x)
hyperbolic arc sine | asinh(x)
hyperbolic arctan atanh(x)

aDiffer for z < 0.
batan2(x,y)

computes the arc tangent ofin the rangd—m /2, +7/2].

©2001 J.E. Akin

Table B.7: Mathematical functions.

is used to calculate the arc tangentzgfy in the rangg/—m, +=]. The one-argument functicatan(x)

Description | C++ | F90 F77 | MATLAB |
Conditionally execute statements if if if if
{} end if end if end
Loop a specific number of times | for k=1:n do k=1,n do # k=1,n | for k=1:n
{} end do # continue end
Loop an indefinite number of times while do while — while
{} end do — end
Terminate and exit loop break exit go to break
Skip a cycle of loop continue cycle go to —
Display message and abort error() stop stop error
Return to invoking function return return return return
Conditional array action — where — if
Conditional alternate statements else else else else
else if elseif elseif elseif
Conditional array alternatives — elsewhere — else
— — — elseif
Conditional case selections switch { } | select case if if
end select end if end
Table B.8 Flow Control Statements.
| Loop | MATLAB | C++ Fortran
Indexed loop for index=matrix for (init;test;inc) do index=b,e,i
Statements Statements
end Statements end do
Pre-test loop while test while (test) { do while (test)
Statements Statements Statements
end end do
Post-test loop do { do
Statements Statements
} while (test) if (test) exit
end do

Table B.9: Basic loop constructs.

©2001 J.E. Akin

| MATLAB Fortran | C++ |
if | _expression IF (I _—expression) THEN if (I _expression)
true group true group
end ND IF true group;
IF (I _expression) true statement if (I _expression)
true statement;

Table B.1Q IF Constructs. The quantity_ expression
is eitherTRUEOf FALSE. The termtrue statement

means a logical expression having a value that
ortrue group means thatthe statement or group

of statements, respectively, are executed if the conditional iii tretatement evaluates TRUE

| MATLAB | Fortran C++

if | _expressionl IF (I _—expressionl) THEN if (I _expressionl)
true group A true group A
if | _expression2 IF (I _—expression2) THEN true group A

true group B true group B if (I _expression2)

end END IF
true group C true group C true group B

end ND IF

statement group D

statement group D

true group C

statement group D

Table B.11 NestedF Constructs.

MATLAB | Fortran C++
if | _expression IF (I _—expression) THEN if (I _expression)
true group A true group A
else ELSE true group A
false group B false group B
end END IF else
alse group B
Table B.12 Logical IF-ELSE Constructs.
MATLAB | Fortran | C++
if | _expressionl IF (I _—expressionl) THEN if (I _expressionl)
true group A true group A
elseif | _expression2 ELSE IF (I _expression2) THEN true group A
true group B true group B
elseif | _expression3 ELSE IF (I _expression3) THEN else if (I _expression2)
true group C true group C
else ELSE true group B

default group D
end

default group D
ND IF

else if (I _expression3)
true group C
else

?efault group D

©2001 J.E. Akin

Table B.13 Logical IF-ELSE-IF Constructs.

F90

| C++

SELECT CASE
CASE (value 1
group 1
CASE (value 2)
group 2

CASE (value n)
group n

CASE DEFAULT
default group

expression)

switch (expression)

case value 1 :
grou 1
reak;

case value 2 :

roup 2
reak;

case value n :

END SELECT grou n
reak;
decflatfjlt:l
efault group
break;
Table B.14 Case Selection Constructs.
F90 NamedIF FO90NamedSELECT
name: IF (logical _1) THEN name: SELECT CASE (expression)
true group A CASE (value 1)
ELSE IF (logical _2) THEN rou

true group B
ELSE

default group C
ENDIF name

group 1
CASE (value 2)

group 2
CASE DEFAULT
default group
END SELECT name

Table B.15 F90 Optional Logic Block Names.

| Fortran | C++
DO 1 .. for (...) {
DO 2 .. for (...) {
IF (disaster) THEN it (disaster)
GO TO go to error
END IF
2 END DO }
1 END DO

3 next statement

error:

Table B.16 GO TBreak-out of Nested Loops. This situation can be an exception to the general recom-
mendation to avoisO TGstatements.

| F77

F90

| C++

DO1 1 =1N
I= (skip condition) THEN
GO TO 1

DO | = 1N

I= (skip condition) THEN
CYCLE ! to next |

for (i=1; i<n; i++)

if (skip condition)
continue; // to next

ELSE ELSE else if
false group false group false group
END END IF end
1 continue END DO }

Table B.17: Skip a Single Loop Cycle.

©2001 J.E. Akin

F77 | F90 C++
DO11 = 1N DO | = 1,N for (i=1; i<n; i++)
IF (exit condition) THEN IF (exit condition) THEN
GO TO 2 EXIT ! this do if (exit condition
ELSE ELSE break;// out of loop
false group false group else if
END IF END IF false group
1 CONTINUE END DO end
2 next statement next statement
next statement

Table B.18 Abort a Single Loop.

main: DO ! forever
test: DO k=1,k _max
third: DO m=m _max,m_min,-1
IF (test condition? THEN
CYCLE test ! loop on k
END IF
END DO third ! loop on m
fourth; DO n=n _min,n _max,2
IF (main condition) THEN
EXIT main ! forever loop
END DO fourth ! on n
END DO test ! over k
END DO main

next statement

Table B.19 FO0DG Named for Control.

MATLAB | C++
initialize test initialize test
while | _expression while (I _expression)
true group
change test true group
end change test
| F77 | F90
initialize test initialize test
continue do while (I _expression)
IF (I _expression) THEN true group
true group change test
change test end do
go to #
END IF

Table B.20 Looping While a Condition is True.

©2001 J.E. Akin

Function
MATLAB 2 C++ Fortran
Type
program statements main(argc,char **argv) program main
[yl...yn]=f(al,...,am) type y
[end of file] statements type al,...type am
= f(al,l,am); Statements
g y = f(al,...,am
call s(al,...,am
end program
subroutine void f subroutine s(al,...,am)
(type al,....type am) type al,...type am
statements
statements end
function funcft(iog [r1...r)n] type f (type al,...,type am functi?n f(al,...,am)
=f(al,....am type
statements { statements} type al,..type am
stadtements
en

aEvery function or program in MTLAB must be in separate files.

Table B.21 Function definitions. In each case, the function being defined is ndmed is called with
margumentsl,...,am

| One-Input, One-Result Procedures

MATLAB | function out = name (in)
F90 function name (in) ! name = out

function name (in) result (out)
C++ name (in, out)

| Multiple-Input, Multiple-Result Procedures
MATLAB | function [inout, out2] = name (inl, in2, inout)
F90 subroutine name (inl, in2, inout, out2)

C++ name(inl, in2, inout, out2)

Table B.22 Arguments and return values of subprograms.

©2001 J.E. Akin 10

| Global Variable Declaration |

MATLAB

global list of variables

F77

common/set_name/ list of variables

F90

module set_name

save

type (type_tag) :: list of variables
end module set_name

C++

extern list of variables

Access to Global Variables |

MATLAB

global list of variables

F77

common/set_name/ list of variables

F90

use set_namepnly subset of variables

use set_name?2 list of variables

D

C++

extern list of variables

Table B.23 Defining and referring to global variables.

| Action | C++ | F90]
Bitwise AND & iand
Bitwise exclusive OR A ieor
Bitwise exclusive OR | ior
Circular bit shift ishftc
Clear bit ibclr
Combination of bits mvbits
Extract bit ibits
Logical complement ~ not
Number of bits in integer sizeof bit _size
Set bit ibset
Shift bit left < ishft
Shift bit right > ishft
Test on or off btest
Transfer bits to integer transfer

Table B.24 Bit Function Intrinsics.

©2001 J.E. Akin

11

0 NUL 1 SOH 2 STX 3 ETX
8 BS 9 HT 10 NL 11 VT
16 DLE 17 DC1 18 DC2 19 DC3 20 DC4 21 NAK 22 SYN 23 ETB
24 CAN 25 EM 26 SUB 27 ESC

4 EOT 5 ENQ 6 ACK 7 BEL
12 NP 13 CR 14 SO 15 SI

28FS 29 GS 30 RS 31 US

32 SP 33 | 34 " 3 # 36 $ 37 % 38 & 39
40 (41) 42 * 43 + 44 45 - 46 . 47 |
48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7
56 8 57 9 58 59 ; 60 < 61 = 62 > 63 7
64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
72 H 73 1 74 J 75 K 76 L 7 M 78 N 79 O
80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W
88 X 89 Y 90 Z 91 | 92 \ 93] 94 -~ 95
9% 97 a 98 b 99 ¢ 100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k 108 | 109 m 110 n 111 o

112 p 113 g 114 r 115 s 116 t 117 wu 118 v 119 w

120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 DEL

Table B.25 The ACSII Character Set.
ACHAR (1) Character number | in ASCII collating s¢

ADJUSTL (STRING)
ADJUSTR (STRING)

CHAR (I) *

IACHAR (C)

ICHAR (C)

INDEX (STRING, SUBSTRING)?
LEN (STRING)

LEN_TRIM (STRING)

LGE (STRING_A, STRING _B)
LGT (STRING_A, STRING _B)
LLE (STRING _A, STRING _B)
LLT (STRING _A, STRING _B)
REPEAT (STRING, NCOPIES)
SCAN (STRING, SET)?

TRIM (STRING)

VERIFY (STRING, SET) 2
STRING_A//STRING _B

Adjust left

Adjust right

Character | in processor collating set
Position of C in ASCII collating set
Position of C in processor collating set
Starting position of a substring
Length of a character entity

Length without trailing blanks
Lexically greater than or equal
Lexically greater than

Lexically less than or equal

Lexically less than

Repeated concatenation

Scan a string for a character in a set
Remove trailing blank characters
Verify the set of characters in a string
Concatenate two strings

a0ptional arguments not shown.

Table B.26 F90 Character Functions.

Action ASCII

Alert (Bell)
Backspace
Carriage Return
End of Transmission
Form Feed
Horizontal Tab

New Line

Vertical Tab

Character| F9O0Inpuf | C++ Input
7 Ctrl-G \a

8 Ctrl-H \b

13 Ctrl-M \r

4 Ctrl-D Ctrl-D
12 Ctrl-L \f

9 Ctrl-I \t

10 Ctrl-J \n

11 Ctrl-K \V

a“Ctrl-" denotes control action. That is, simultaneous pressing o2RBNTROkey andthe letter following.

Table B.27 How to

©2001 J.E. Akin

type non-printing characters.

12

—

C, C++ | Variable.component.sub _component
F90 Variable%component%sub _component

Table B.28 Referencing Structure Components.

C, C++ | struct data _tag {
intrinsic _type _1 component _names;
intrinsic _type _2 component _names;
F90 type data _tag
intrinsic _type _1 : component _names;
intrinsic _type _2 : component _names;
end type data _tag

Table B.29 Defining New Types of Data Structure.

C, C++ | struct data _tag {
intrinsic _type _1 component _names;
struct tag _2 component _names;
F90 type data _tag
intrinsic _type :: component _names;
type (tag _2) :: component _names;
end type data _tag

Table B.30 Nested Data Structure Definitions.

C, C++

struct data _tag variable _list; /* Definition */
struct data _tag variable = {component _values }; /* Initialization */
variable.component.sub _component = value; /* Assignment */

F90

type (data _tag) :: variable _list ! Definition
variable = data _tag (component _values) ! Initialization
variable%component%sub _component = value ! Assignment

Table B.31 Declaring, initializing, and assigning components of user-defined datatypes.

©2001 J.E. Akin 13

INTEGER, PARAMETER :: j_max = 6
TYPE meaning _demo
INTEGER, PARAMETER :: k_max = 9, word = 15
CHARACTER (LEN = word) :: name(k _max)
END TYPE meaning_demo

TYPE (meaning _demo) derived(j _max)
Construct Interpretation
derived All components of alberived 's elements
derived(j) All components of*" element otlerived
derived(j)%name All k _max components ofiame within j*" element ofderived
derived%name(k) Componenk of thename array for all elements aferived
derived(j)%name(k) Componenk of thename array ofjt" element ofderived

Table B.32 F90 Derived Type Component Interpretation.

| | C++ | F90
Declaration| type _tag *pointer _name; type (type _tag), pointer :
pointer _name
Target &target _name type (type _tag), target :: target _name
Examples char *cp, c; character, pointer :: cp
int *ip, i integer, pointer :: ip
float *fp, f; real, pointer :: fp
cp = & ¢ cp=>¢
ip =& i ip=>i
fB =& f; #;J) =>f

Table B.33 Definition of pointers and accessing their targets.

C, C++ | pointer _name = NULL

F90 nullify (list _of _pointer _names)
F95 pointer _name = NULL()

Table B.34 Nullifing a Pointer to Break Association with Target.

| Purpose | F90 | MATLAB |

Form subscripts @) @]
Separates subscripts & elements ,
Generates elements & subscripts
Separate commands

Forms arrays) []
Continue to new line & ...
Indicate comment ! %
Suppress printing default ;

Table B.35 Special Array Characters.

©?2001 J.E. Akin 14

upy ‘3t 10020

GT

| Description | Equation | Fortran90 Operator | Matlab Operator | Original Sizes| Result Sizdg

Scalar plus scalar c=azxb c=azxb c=azxb 1,1 1,1
Element plus scalar Cjk = aji £ b c=atbh c=a=tb m,n andl, 1 m,n
Element plus element | cjp = aji + b c=atbh c=a=tb m,n andm,n m,n
Scalar times scalar c=axb c=axb c=axb; 1,1 1,1
Element times scalar Cjk = @jp X b c=axb c=axb; m,n andl, 1 m,n
Element times element c;, = aji X bjx c=axb c=a.xb m,n andm,n m,n
Scalar divide scalar c=a/b c=a/b c=afb; 1,1 1,1
Scalar divide element Cik = Qji /b c=a/b c=a/b; m,n andl,1 m,n
Element divide element c¢j, = aji/bjx c=afb c=a./b; m,n andm,n m,n
Scalar power scalar c=a ¢ = axxb c=aANb 1,1 1,1
Element power scalar Cjk = a?k c = a*xb c=aAb m,n andl, 1 m,n
Element power element ¢, = a?j’j c = a**b c=a.Nb; m,n andm,n m,n
Matrix transpose Crj = Aji C = transpose (A) Cc=A4 m,n n,m
Matrix times matrix Cij = >k AirBuj C = matmul(A4, B) C = Ax B; m,r andr,n m,n
Vector dot vector c= , ArBs ¢ =sum(A x B) ¢ =sum(A. x B); | m,1andm,1 1,1

¢ = dot _product(A4, B) c=AxB'; m,1andm,1 1,1

Table B.36 Array Operations in Programming Constructs. Lower case letters denote scalars or scalar elements of arrays. Matlab arrays are allowed a maximum
of two subscripts while Fortran allows seven. Upper case letters denote matrices or scalar elements of matrices.

Table B.37 Equivalent Fortran90 and MLAB Intrinsic Functions.

The following KEY symbols are utilized to denote the TYPE of the in-
trinsic function, or subroutine, and its arguments: A-complex, integer,
or real; I-integer; L-logical; M-mask (logical); R-real; X-real; Y-real;
V-vector (rank 1 array); and Z-complex. Optional arguments are not
shown. Fortran 90 and MLAB also have very similar array operations

and colon operators.

Type Fortran90 M ATLAB Brief Description

A ABS(A) abs(a) Absolute value of A.

R ACOS(X) acos(x) Arc cosine function of real X.

R AIMAG(2) imag(z) Imaginary part of complex number.

R AINT(X) real(fix(x)) Truncate X to a real whole number.

L ALL(M) all(m) True if all mask elements, M, are true.
R ANINT(X) real(round(x)) Real whole number nearest to X.

L ANY (M) any(m) True if any mask element, M, is true.

R ASIN(X) asin(x) Arcsine function of real X.

R ATAN(X) atan(x) Arctangent function of real X.

R ATAN2(Y,X) atan2(y,x) Arctangent for complex number(X, Y).
I CEILING(X) ceil(x) Least integer-=real X.

Z CMPLX(X,Y) (x+yi) Convert real(s) to complex type.

Z CONJG(2) conj(z) Conjugate of complex number Z.

R COS(R-2) cos(r-z) Cosine of real or complex argument.

R COSH(X) cosh(x) Hyperbolic cosine function of real X.

I COUNT(M) sum(m==1) Number of true mask, M, elements.
R,L DOT_PRODUCT(X,Y) X'xY Dot product of vectors X and Y.

R EPSILON(X) eps Number, like XK 1.

R,Z EXP(R_Z) exp(r_z) Exponential of real or complex number
I FLOOR(X) floor Greatest integet X.

R HUGE(X) realmax Largest number like X.

I INT(A) fix(a) Convert A to integer type.

R LOG(R_2) log(r_z) Logarithm of real or complex number.
R LOG10(X) log10(x) Base 10 logarithm function of real X.
R MATMUL(X,Y) X %Yy Conformable matrix multiplication, X*Y.
LV I=MAXLOC(X) [y,i]=max(x) Location(s) of maximum array element.
R Y=MAXVAL(X) y=max(x) Value of maximum array element.

LV I=MINLOC(X) [y,i]=min(x) Location(s) of minimum array element.
R Y=MINVAL(X) y=min(x) Value of minimum array element.

I NINT(X) round(x) Integer nearest to real X.

A PRODUCT(A) prod(a) Product of array elements.

call RANDOM_NUMBER(X) x=rand Pseudo-random numbergin1).

call RANDOM_SEED rand('seed’) Initialize random number generator.
R REAL (A) real(a) Convert A to real type.

R RESHAPE(X, (/1,121/)) reshape(x,i, i2) Reshape array X intdd array.

(RY SHAPE(X) size(x) Array (or scalar) shape vector.

R SIGN(X,Y) Absolute value of X times sign of Y.

R SIGN(0.5,X)-SIGN(0.5,-X) sign(x) Signum, normalized sign, -1, 0, or 1.
R,Z SIN(R_Z) sin(r_z) Sine of real or complex number.

R SINH(X) sinh(x) Hyperbolic sine function of real X.

I SIZE(X) length(x) Total number of elements in array X.
R,Z SQRT(R.2) sqrt(r—z) Square root, of real or complex number.
R SUM(X) sum(x) Sum of array elements.

©2001 J.E. Akin

(continued)

16

Type Fortran90 M ATLAB Brief Description |

R TAN(X) tan(x) Tangent function of real X.

R TANH(X) tanh(x) Hyperbolic tangent function of real X.
R TINY(X) realmin Smallest positive number like X.

R TRANSPOSE(X) X' Matrix transpose of any type matrix.
R X=1 x=ones(length(x)) Setall elementsto 1.

R X=0 x=zero(length(x)) Set all elementsto 0.

For more detailed descriptions and example uses of these intrinsic functions see Adamasal, C.,
Fortran 90 HandbookMcGraw-Hill, New York, 1992, ISBN 0-07-000406—4.

B.2 Alphabetical Table of Fortran 90 Intrinsic Routines

The following KEY symbols are utilized to denote the TYPE of the intrinsic function, or subroutine, and
its arguments: A-complex, integer, or real; B-integer bit; C-character; D-dimension; I-integer; K-kind;
L-logical; M-mask (logical); N-integer, or real; P-pointer; R-real; S-string; T-target; V-vector (rank one
array); X-real; Y-real; Z-complex; and *-any type. For more detailed descriptions and example uses of
these intrinsic functions see Adams, J.C., etRdrfran 90 HandbookMcGraw-Hill, New York, 1992,

ISBN 0—07-000406-4.

C++ - int - - floor ceil
F90 aint int anint nint floor ceiling
MATLAB real (fix) fix real (round) round floor ceil
Argument Value of Result
—2.000 -2.0 -2 -2.0 -2 -2 -2
-1.999 -1.0 -1 -2.0 -2 -2 -1
-1.500 -1.0 -1 -2.0 -2 -2 -1
-1.499 -1.0 -1 -1.0 -1 -2 -1
-1.000 -1.0 -1 -1.0 -1 -1 -1
-0.999 0.0 0 -1.0 -1 -1 0
—-0.500 0.0 0 -1.0 -1 -1 0
-0.499 0.0 0 0.0 0 -1 0
0.000 0.0 0 0.0 0 0 0
0.499 0.0 0 0.0 0 0 1
0.500 0.0 0 1.0 1 0 1
0.999 0.0 0 1.0 1 0 1
1.000 1.0 1 1.0 1 1 1
1.499 1.0 1 1.0 1 1 2
1.500 1.0 1 2.0 2 1 2
1.999 1.0 1 2.0 2 1 2
2.000 2.0 2 2.0 2 2 2

Table B.38 Truncating Numbers.

WHERE (logical _array _expression)
true _array _assignments

ELSEWHERE
false _array _assignments
END WHERE
WHERE (logical _array _expression) true _array _assignment

Table B.39 F90WHERE onstructs.

©2001 J.E. Akin 17

| Function | Description | Opt | Example
all Find if all values are true, fora fixed di- d | all(B = A, DIM = 1)
mension. (true, false, false)
any Find if any value is true, for a fixed dit d | any (B > 2, DIM = 1)
mension. (false, true, true)
count Count number of true elements for|la d | count(A = B, DIM = 2)
fixed dimension. (1, 2)
maxloc Locate first element with maximum m | maxloc(A, A < 9)
value given by mask. (2,3)
maxval Max element, for fixed dimension, given b | maxval (B, DIM=1, B > 0)
by mask. (2,4,6)
merge Pick true array, A, or false array, B, ac- — | merge(A, B, L)
cording to mask, L. 0 3 5
2 4 8
minloc Locate first element with minimumvalue m | minloc(A, A > 3)
given by mask. (2,2)
minval Min element, for fixed dimension, given b minval(B, DIM = 2)
by mask. (1,2)
pack Pack array, A, into a vector under contriol v | pack(A, B < 4)
of mask. 0,7,3)
product Product of all elements, for fixed dimen- b | product(B) ; (720)
sion, controlled by mask. product(B, DIM = 1, T)
(2,12, 30)
sum Sum all elements, for fixed dimension, b | sum(B) ;(21)
controlled by mask. sum(B, DIM = 2, T)
(9, 12)
unpack | Replace the truelocationsinarray B can-— | unpack(U, L, B)
trolled by mask L with elements from the 7 3 8
vector U. 2 4 9
0 3 5 1 3 5 T F T
A‘{74 8} B—[24 6} L_[F F]J’ U=(789

Table B.40 F90 Array Operators with Logic Mask Contrdl.andF’ denote true and false, respectively.
Optional argumentss -- DIM & MASK,d -- DIM ,m -- MASK,v -- VECTOR andDIM =

for any rowsDIM =

2 for any columns, an®IM

= 3 for any plane.

1limplies

Intrinsic

Description

ABS (A)

ACHAR (1)

ACOS (X)

ADJUSTL (S)

ADJUSTR (S)

AIMAG (2)

AINT (X [,K])

ALL (M [,D])
ALLOCATED (* _ARRAY _P)

'_l_;U;UOO;UO>Q|
©
()

Absolute value of A.
Character in position | of ASCII collating sequence
Arc cosine (inverse cosine) function of real X.

Adjust S left, move leading blanks to trailing blanks|.

Adjust S right, move trailing blanks to leading blank
Imaginary part of complex number, Z.
Truncate X to a real whole number, of the given kin
True if all mask, M, elements are true, in dimension
True if the array or pointer is allocated.

n

D.

©2001 J.E. Akin

(continued)

18

Alphabetic Table of Fortran90 Intrinsic Functions (continued)
Type | Intrinsic | Description
R ANINT (X [,K]) Real whole number nearest to X, of the given kind.
L ANY (M [,D]) True if any mask, M, element is true, in dimension D.
R ASIN (X) Arcsine (inverse sine) function of real X.
L ASSOCIATED (P [,T]) True if pointer, P, is associated with any target, or T|.
R ATAN (X) Arctangent (inverse tangent) function of real X.
R ATANZ (Y, X) Arctangent for argument of complex number (X, Y)
I BIT _SIZE (I) Maximum number of bits integer | can hold, e.g. 32
L BTEST (I,I_POS) True if bit location I_POS of integer | has value 1.
I CEILING (X) Least integer> real X, of the given kind.
C CHAR (I [K]D Character in position | of processor collating sequerce.
Z CMPLX (X [,YILKD Convert real(s) to complex type, of given kind.
Z CONJG (2) Conjugate of complex number Z.
R COS (R_2) Cosine function of real or complex argument.
R COSH (X) Hyperbolic cosine function of real X.
I COUNT (M [,D]) Number of true mask, M, elements, in dimension D
* CSHIFT x_ARAY,l _SHIF [,D]) Circular shift out and in for L SHIF elements.
call DATE _AND _TIME ([S_DATE] Real-time clock date, time, zone, and vector
[,S_TIME] [,S _ZONE] with year, month, day, UTC, hour, minutes, seconds,
[, -V _VALUES]) and milliseconds.
R DBLE (A) Convert A to double precision real.
N DIGITS (N) Number of significant digits for N, e.g. 31.
R DIM (X,Y) The difference, MAX (X-Y, 0.0).
N,L DOT_PRODUCT (V,V_2) Dot product of vectors V and V2.
R DPROD (X,Y) Double precision real product of two real scalars.
* EOSHIFT (_ ARRAY, Perform vector end-off shift by | _shift terms,
| — SHIFT [x_FILL][,D]) and fill, in dimension D.
R EPSILON (X) Number« 1, for numbers like X, e.g. £—23.
R,Z | EXP (R_2) Exponential function of real or complex argument.
I EXPONENT (X) Exponent part of the model for real X.
I FLOOR (X) Greatest integer less than or equal to X.
R FRACTION (X) Fractional part of the model for real X.
N HUGE (N) Largest number for numbers like N, e.gx228.
I IACHAR (C) Position of character C in ASCII collation.
B IAND (1,1 _2) Logical AND on the bits of land 12
B IBCLR (I,1 _POS) Clear bit I_POS to zero in integer I.
B IBITS (I,| _POS,L LEN) Extract an L LEN sequence of bits atIPOS in I.
B IBSET (1,I_POS) Set bit I_POS to one in integer I.
I ICHAR (C) Position of character C in processor collation.
B IEOR (I,I_2) Exclusive OR on the bits of | and_I2.
I INDEX (S,S_SUB [,L_BACK]) Left starting position of S SUB within S (right).
I INT (A [K]) Convert A to integer type, of given kind.
B IOR (1,1-2) Inclusive OR on the bits of | and 2.
B ISHFT (I, _SHIFT) Logical shift of bits of | by I_SHIFT, pad with 0.
B ISHFTC (I,I_SHIFT [,I_SIZE]) Logical circular shift of L SIZE rightmost bits of I.
I KIND (ANY) Kind type integer parameter value for any argument.
R, LBOUND (x_ARRAY [,D]) ARRAY lower bound(s) vector, along dimension D.
I LEN (S) Total character string length.
I LEN_TRIM (S) Length of S without trailing blanks.
L LGE (S,5.2) True if S> or equal to S 2 in ASCII sequence.
L LGT (S,S_2) True if S follows S_2 in ASCII collating sequence.

(continued)

©2001 J.E. Akin 19

Alphabetic Table of Fortran90 Intrinsic Functions (continued)

Type | Intrinsic | Description
L LLE (S,S_2) True if S< or equal to S 2 in ASCII sequence.
L LLT (S,S_2 True if S precedes S2 in ASCII collating sequence.
R LOG (R-2) Natural (base e) logarithm of real or complex numb
L LOGICAL (L [,K]) Convert L to logical of kind K.
R LOG10 (X) Common (base 10) logarithm function of real X.
N,L | MATMUL (MATRIX,MATRIX _2) | Conformable matrix multiplication.
N MAX (N,N _2[,N_3,...]) Maximum value of two or more numbers same type.
I MAXEXPONENT (X) Maximum exponent for real numbers like X, e.g. 12
LV MAXLOC (N _ARRAY [,M]) Location(s) of maximum ARRAY element, passing |
N MAXVAL (N _ARRAY [,D] [[M]) Maximum ARRAY term, in dimension D, passing M.
* MERGE _TRUEx_FALSE,M) | Usex_TRUE when M is true;x _ FALSE otherwise.
N MIN (N,N_2[,N_3,...]) Minimum value of two or more same type numbers
I MINEXPONENT (X) Minimum exponent for real numbers like X, e.g. —125.
LV MINLOC (N _ARRAY [,M]) Location(s) of minimum ARRAY term, passing M.
N MINVAL (N _ARRAY [,D] [,M]) Minimum ARRAY term, in dimension D, passing M.
N MOD (N,N_2) Remainder for N.2. That is, N—INT(N/N_ 2)xN _2.
N MODULO (N,N_2) Modulo, that is, N-FLOOR(N/N 2)xN _2.
call | MVBITS (I _FROM,I_LOC, Copy |_LEN bitsatI_LOCin|_FROMto I_TO
| _LEN,I_TO,I_POS) at1_POS.
R NEAREST (X,Y) Nearest number at X in the direction of sign Y.
I NINT (X [,K]) Integer nearest to real X, of the stated kind.
I NOT (I) Logical complement of the bits of integer I.
*V PACK (x_ARRAY,M [,V _PAD]) Pack ARRAY at true M into vector, using VPAD.
I PRECISION (R.2) Decimal precision for a real or complex fZ, e.g. 6.
L PRESENT (OPTIONAL) True if optional argument is present in call.
A PRODUCT (A_ARRAY [,D] [[M]) | Product of ARRAY elements, along D, for mask M.
I RADIX (N) Base of the model for numbers like N, e.g. 2.
call RANDOM _NUMBER (X) Pseudo-random numbers in raripe X < 1.
call RANDOM _SEED ([I_SIZE] Initialize random number generator, defaults to
[l -V _PUT][,| -V _GET)]) processor initialization.
I RANGE (A) Decimal exponent range in the model for A, e.g. 37.
R REAL (A [,K]) Convert A to real type, of type K.
S REPEAT (S,LCOPIES) ConcatenatesICOPIES of string S.
* RESHAPE &_ARAY,I _V _SHAP | Reshape ARAY, using vector SHAP, pad from
[,x_PAD] [,V _ORDER]) an array, and re-order.
R RRSPACING (X) Relative spacing reciprocal of numbers near X.
R SCALE (X,1) Return X times x|, for base of b = RADIX (X).
I SCAN (S,S.SET [,L_BACK]) Leftmost character index in S found in.SET; (right-
most).
I SELECTED_INT _KIND (I _r) Integer kind with range, —(26&I _r) to (10xxl _r).
I SELECTED_REAL _KIND Kind for real of decimal precision, |, and exponent
I [MLr=r range, Lr.
R SET_EXPONENT (X,I) Number with mantissa of X and exponent of I.
LV SHAPE & _ARRAY) ARRAY (or scalar) shape vector.
N SIGN (N,N_2) Absolute value of N times sign of same type R.
R,Z | SIN(R-2) Sine function of real or complex number.
R SINH (X) Hyperbolic sine function of real X.
I SIZE (x_ARRAY [,D]) ARRAY size, along dimension D.
R SPACING (X) Absolute spacing of numbers near real X, e gx-2L7.
* SPREAD &_ARAY,D,| _COPIES) | | _COPIES along dimension D of ARAY into an arrd
of rank 1 greater.

vy

©2001 J.E. Akin

(continued)

20

Alphabetic Table of Fortran90 Intrinsic Functions (continued)
Type | Intrinsic | Description
R,Z | SQRT (R_2) Square root function, of real or complex number.
A SUM (A_ARRAY [,D] [[M]) Sum of ARRAY elements, along D, passing mask N
call SYSTEM_ CLOCK ([I - NOW] Integer data from real-time clock. CPU time is
[_RATE] [,| _MAX]) (finish_now - start. now)/rate.
R TAN (X) Tangent function of real X.
R TANH (X) Hyperbolic tangent function of real X.
R TINY (N) Smallest positive number, like N, e.gx2-126.
* TRANSFER &_ARAY, V _MOLD | Same representation as ARAY, but type of MOLD,
[.I _SIZE]) vector of length SIZE.
* TRANSPOSE (MATRIX) Matrix transpose of any type matrix.
S TRIM (S) Remove trailing blanks from a single string.
LV UBOUND (x_ARRAY [,D]) ARRAY upper bound(s) vector, along dimension D,
* UNPACK (V,M,x_USE) Unpack vector V at true elements of M, into USE.
I VERIFY (S,S_SET [,L_BACK]) First position in S not found in SSET (or last).

Subject Table of Fortran 90 Intrinsic Routines

The following KEY symbols are utilized to denote the TYPE of the intrinsic function, or subroutine, and
its arguments: A-complex, integer, or real; B-integer bit; C-character; D-dimension; I-integer; K-kind;
L-logical; M-mask (logical); N-integer, or real; P-pointer; R-real; S-string; T-target; V-vector (rank one
array); X-real; Y-real; Z-complex; and *-any type. For more detailed descriptions and example uses of

these intrinsic functions see Adams, J.C., etfdriran 90 HandbookMcGraw-Hill, New York, 1992,

ISBN 0—-07-000406—4.

Y

=)

| Type Intrinsic | Description |
ALLOCATION
L ALLOCATED (*x_ARRAY) True if the array is allocated.
ARGUMENT
L PRESENT (OPTIONAL) True if optional argument is present in the call.

ARRAY: CONSTRUCTION

ARRAY: DIMENSIONS

V. LBOUND (x_ARRAY [,D])
IV SHAPE (x_ARRAY)

| SIZE (x_ARRAY [,D])

V. UBOUND (x_ARRAY [,D])

ARRAY: INQUIRY

L ALL (M [,D])

L ALLOCATED (x_ARRAY)
L ANY (M [,D])

V. LBOUND (x_ARRAY [,D])
IV SHAPE (x_ARRAY)

* MERGE _ TRUE x_FALSE,M)

*xV PACK (x_ARRAY,M [V _PAD])

* RESHAPE &_ARRAY,| _V _SHAPE
[.x_PAD] [,V _ ORDERY])

* SPREAD §_ARRAY,D,| _COPIES)

* UNPACK (V,Mx_USE)

Usex_TRUE if M is true; x_ FALSE otherwise.
Pack ARRAY for true M into vector, pad fron
V _PAD.

Reshape ARRAY using vector SHAPE, pad from
array, and re-order.

array.
Unpack V at true elements of M, into USE.

ARRAY lower bound(s vector), along dimension [
ARRAY (or scalar) shape vector.
ARRAY size, along dimension D.
ARRAY upper bound(s vector), along dimension

True if all mask, M, elements are true, along D.
True if the array is allocated.

True if any mask, M, element is true, along D.
ARRAY lower bound(s) vector, along dimension [

| _COPIES along D of ARRAY to rank 1 greate

Y

=

~

~

ARRAY (or scalar) shape vector.

(continued)

©2001 J.E. Akin

21

Subject Table of Fortran 90 Intrinsic Functions (continued)

Type Intrinsic

Description

IV UBOUND (x_ARRAY [,D])

ARRAY: LOCATION
LV MAXLOC (N _ARRAY [,M])
LV MINLOC (N _ARRAY [,M])

ARRAY: MANIPULATION

* CSHIFT (_ARRAY,| _SHIFT [,D])
* EOSHIFT ¢_ARRAY,| _SHIFT
[.x—FIL][.D])

* TRANSPOSE (MATRIX)

ARRAY: MATHEMATICS

NL DOT_PRODUCT (V,V_2)

NL MATMUL (MATRIX,MATRIX _2)
N MAXVAL (N _ARRAY [,D] [,M])
N MINVAL (N _ ARRAY [,D] [,M])
A PRODUCT (A_ARRAY [,D] [,M])
A SUM (A _ARRAY [,D] [, M])

ARRAY: PACKING
%V PACK (x_ARRAY,M [,V _PAD])

* UNPACK (V,M,x_USE)

ARRAY: REDUCTION

ALL (M[,D])

ANY (M [,D])

COUNT (M [,D])

MAXVAL (N _ARRAY [,D] [,M])
MINVAL (N _ARRAY [,D] [,M])
PRODUCT (A_ARRAY [,D] [,M])
SUM (A _ARRAY [,D] [M])

BACK SCAN

| INDEX (S,S_SUB [,L_BACK])
| SCAN (S,S_SET [,L_BACK])

| VERIFY (S,S_SET [,L_BACK])

BIT: INQUIRY
| BIT _SIZE (I)

BIT: MANIPULATION

>rzzZz—rr

L BTEST (I,|_POS)

B IAND (1,1 _2)

B IBCLR (I,| _POS)

B IBITS (I,| _POS,L LEN)

B IBSET (I,|_POS)

B IEOR (1,1_2)

B IOR (I,1_2)

B ISHFT (I,1_SHIFT)

B ISHFTC (1,1_ SHIFT [,I_SIZE])

cal MVBITS (I_GET, I_LOC, I,
|_TO,I_POS)

| NOT (1)

* TRANSFER & _ARRAY,

ARRAY upper bound(s) vector, along dimension D.

Location(s) of maximum ARRAY term, passing M.
Location(s) of minimum ARRAY term, passing M

Circular shift out and in for LSHIFT elements.
End-off shift ARRAY, and fill, in dimension D.

Matrix transpose of any type matrix.

Dot product of vectors V and V2.

Conformable matrix multiplication.

Value of max ARRAY term, along D, passing M.
Value of min ARRAY term, along D, passing M.
Product of ARRAY terms, along D, for mask M.
Sum of ARRAY terms, along D, passing mask M,

Pack ARRAY for true M into vector, pad from
V _PAD.
Unpack V at true elements of M, into USE.

True if all mask, M, terms are true, along D.
True if any mask, M, term is true, along D.
Number of true mask, M, terms, along dimension|D.
Value of max ARRAY term, along D, passing M.
Value of min ARRAY term, along D, passing M.
Product of ARRAY terms, along D, for mask M.
Sum of ARRAY terms, along D, passing mask M,

Left starting position of S SUB within S (or right).
Left character index in S also InLSSET (or right).
First position in S not belonging to_SSET (or last).

Max number of bits possible in integer |, e.g. 32.

True if bit location L POS of integer | has value on
Logical AND on the bits of and 1 2.

Clear bit I_POS to zero in integer I.

Extract I_LEN bits at I_POS in integer I.

Set bit I_POS to one in integer I.

Exclusive OR on the bits of | and_I2.

Inclusive OR on the bits of | and 12.

Logical shift of bits of | by I_SHIFT, pad with 0.
Logical circular shift of L SIZE rightmost bits of I.

D

CopylbitsatL LOCinl_GETtol_TOatl_POS.
Logical complement of the bits of integer I.

(continued)

©2001 J.E. Akin

22

Subject Table of Fortran 90 Intrinsic Functions (continued)

Type Intrinsic | Description
V _MOLD [,I _SIZE]) Same representation as ARRAY, but type of MOLD.
BOUNDS
I CEILING (X) Least integer greater than or equal to real X.
I FLOOR (X) Greatest integer less than or equal to X.
LV LBOUND (x_ARRAY [,D]) ARRAY lower bound(s) vector, along dimension D.

N MAX (NN _2[[N_3,...])
N MAXVAL (N _ARRAY [,D] [,M])
N MINVAL (N _ ARRAY [,D] [,M])

V. UBOUND (x_ARRAY [,D])

CALLS

call MVBITS (I_GET,I_LOC,|,
|_TO,I_POS)

call DATE_AND _TIME ([S_DATE]
[,S_TIME][,S _ ZONE]
[l _V_VALUES])

cal RANDOM_NUMBER (X)

call RANDOM_SEED ([I_SIZE]
LI_V_P][I_V_G])

call SYSTEM.CLOCK ([I - NOW]

[I _RAT][,| —-MX])

CHARACTERS
C ACHAR (1)

C CHAR (I [,K])

| IACHAR (C)

| ICHAR (C)

CLOCK

call SYSTEM.CLOCK ([l -NOW]
[I _RAT][,] _MX])

COMBINING

* MERGE (_ TRUE x_FALSE,M)

COMPLEX

R AIMAG (2)

z CMPLX (X [, YILK])

z CONJG (2)

R COS (R_2)

RZ EXP(R.2)

R LOG (R_Z)

| PRECISION (R_2)

RZ SIN(R.Z)

RZ SQRT(R2)

CONVERSIONS

R AIMAG (2)

R AINT (X [,K])

z CMPLX (X [, YILK])

R DBLE (A)

R DPROD (X,Y)

Maximum value of two or more numbers same type.

Value of maxaRRAY term, along D, passing M.
Value of minARRAY term, along D, passing M.
ARRAY upper bound(s) vector, along dimension

Copylbitsat L LOCinl_GETtol_TOatl_POS.
Real-time clock data.

Pseudo-random numbers in rarige X < 1.
Initialize random number generator.

Integer data from real-time clock.

Character in position | of ASCII collating sequenge.

Character in position | of processor collation.
Position of character C in ASCII collating sequen
Position of character C in processor collation.

Integer data from real-time clock.

Use x_TRUE term if M is true or x_FALSE
otherwise.

Imaginary part of complex number.

Convert real(s) to complex type, of given kind.
Conjugate of complex number Z.

Cosine function of real or complex argument.

Exponential function of real or complex argument.

Natural (base e) logarithm of real or complex nu
ber.

Decimal precision of real or complex value, e.g. 6.

Sine function of real or complex number.
Square root function, of real or complex number.

Imaginary part of complex number.
Truncate X to a real whole number.
Convert real (s) to complex type, of given kind.
Convert A to double precision real.

U

Ce.

[

Double precision product of two default real scalars.

©2001 J.E. Akin

(continued)

23

Subject Table of Fortran 90 Intrinsic Functions (continued)

Type Intrinsic Description

I INT (A [,K]) Convert A to integer type, of given kind.

L LOGICAL (L [,K]D Convert L to logical of kind K.

I NINT (X [,K]) Integer nearest to real X, of the stated kind.

R REAL (A [,K]) Convert A to real type, of type K.

N SIGN (N,N_2) Absolute value of N times sign of same type R.

* TRANSFER §_ARRAY, Same representation as ARRAY, but type of MOL|
V_MOLD [,I _SIZ])

COPIES

* MERGE _TRUEx_FALSE,M) Usex_TRUE if M is true orx_ FALSE otherwise.

call MVBITS (I _FROM,I_LOC, I, Copy I bitsat LLOCinl_FROMto I_TO at
I _TO,I_POS) | _POS.

S REPEAT (S,L COPIES) Concatenates ICOPIES of string S.

* SPREAD &_ARRAY,D,| _COPIES) | | _COPIES along D of ARRAY to rank 1 greate

array.

COUNTING

I COUNT (M [,D]) Number of true mask, M, terms, along dimension

DATE

call DATE_AND _TIME ([S_DATE] Real-time clock data.

[,S_TIME] [,S _ZONE]
[l _V _VALUES])

DIMENSION OPTIONAL ARGUMENT
L ALL (M [,D])
L ANY (M [,D])
| COUNT (M [,D])
* CSHIFT (_ARRAY,| _SHIFT [,D])
* EOSHIFT ¢_ARRAY,

| _SHIFT [x_FIL][,D])
LBOUND (x_ARRAY [,D])
MAXVAL (N _ARRAY [,D] [M])
MINVAL (N _ ARRAY [,D] [,M])
PRODUCT (A_ARRAY [,D] [,M])
SIZE (x_ARRAY [,D])
SUM (A _ARRAY [,D] [,M])
V' UBOUND (x_ARRAY [,D])

DIMENSIONS

>_>ZZ~2

IV LBOUND (x_ARRAY [,D])
IV SHAPE (_ARRAY)

| SIZE (x_ ARRAY [,D])

V. UBOUND (x_ARRAY [,D])

DOUBLE PRECISION
R DBLE (A)
R DPROD (X,Y)

EXISTENCE
L ALLOCATED (x_ARRAY)
L ASSOCIATED (P [,T])

L PRESENT (OPTIONAL)

FILE

True if all mask, M, terms are true, along D.
True if any mask, M, term is true, along D.
Number of true mask, M, terms, along dimension
Perform circular shift out and in fot ISHIFT terms.
Perform end-off shift, and fill, in dimension D.

ARRAY lower bound(s) vector, along dimension [
Value of maxarRRAY term, along D, passing M.
Value of minARRAY term, along D, passing M.
Product of ARRAY terms, along D, for mask M.
ARRAY size, along dimension D.

Sum of ARRAY terms, along D, passing mask M.
ARRAY upper bound(s) vector, along dimension

ARRAY lower bound(s) vector, along dimension [
ARRAY (or scalar) shape vector.
ARRAY size, along dimension D.
ARRAY upper bound(s) vector, along dimension

(see SELECTED REAL _KIND)
Convert A to double precision real.

D

=

D.

D.

~

o

~

J

Double precision product of two default real scalars.

True if the array is allocated.
True if pointer, P, is associated with any target, of
True if optional argument is present in call.

(continued)

©2001 J.E. Akin

24

T.

Subject Table of Fortran 90 Intrinsic Functions (continued)

Type

Intrinsic

| Description

FILL IN
*

EOSHIFT &_ARRAY,| _SHIFT
[+ FIL]LDI)

INQUIRY: ARRAY

L
L
L
1LV
RY
I
IV

ALL (M[,D])

ALLOCATED (x_ARRAY)
ANY (M [,D])

LBOUND (x_ ARRAY [,D])
SHAPE (x_ ARRAY)

SIZE (x_ARRAY [,D])
UBOUND (x_ARRAY [,D])

INQUIRY: BIT

BIT _SIZE (I)

INQUIRY: CHARACTER

LEN (S)
LEN_TRIM (S)

INQUIRY: NUMBER MODEL

N
R
N

I
I
I
I
I
RY
I

R

DIGITS (N)
EPSILON (X)

HUGE (N)
MAXEXPONENT (X)
MINEXPONENT (X)
PRECISION (R_Z)
RADIX (N)

RANGE (A)

SHAPE (x_ ARRAY)
SIZE (x_ARRAY [,D])
TINY (N)

INQUIRY: MISCELLANEOUS

COUNT (M [,D])

INDEX (S,S_SUB [,L_BACK])
SCAN (S,S_SET [,L_BACK])
VERIFY (S,S_SET [,L_BACK])

INTEGERS

I
I
I
I
N
I

KIND: |
I

CEILING (X)

FLOOR (X)

MAXL (X,X2 [X3])

MINZ (X, X2 [,X3])

MODULO (N,N_2)
SELECTED_INT _KIND (I _r)

NQUIRY
KIND (ANY)

SELECTED_INT _KIND (I _r)

KIND: DEFINITION
I
I

SELECTED_REAL _KIND ([I]
L1-r])

KIND: USE OPTION

End-off shift ARRAY, and fill, in dimension D.

True if all mask, M, terms are true, along D.
True if the array is allocated.

True if any mask, M, term is true, along D.
ARRAY lower bound(s) vector, along dimension [
ARRAY (or scalar) shape vector.

ARRAY size, along dimension D.

ARRAY upper bound(s) vector, along dimension

Max number of bits possible in integer |, e.g. 32.

Total character string length.
Length of S without trailing blanks.

Number of significant digits in number N, e.g. 31
Number« 1, for numbers like X, e.q2#x—23.
Largest number for numbers like N, e.gxA.28.
Max exponent for real numbers like X, e.g. 128.
Min exponent for real numbers like X, e.g. —125.
Decimal precision for real or complex value, e.g.
Base of the model for numbers like N, e.g. 2.
Decimal exponent range for A, e.g. 37.

ARRAY (or scalar) shape vector.

ARRAY size, along dimension D.

Smallest positive number, like N, e.gx2-126.

Number of true mask, M, elements, along D.

Left starting position of S SUB within S (or right).
Left character index in S also in_SSET; (or right).
First position in S not belonging to_SSET, (or last).

Least integer greater than or equal to real X.
Greatest integer less than or equal to X.
Maximum integer from list of reals

Minimum integer from list of reals

Modulo, N-FLOOR(N/NL 2)xN _2.

Integer with exponent, —(4& _r) to (10« _r).

Kind type integer parameter value for any argume

Integer with exponent, —(&&1 _r) to (10l _r).
Real with precision, |, and exponent ranger.l

~

U

o

nt.

©2001

J.E. Akin

(continued)

25

Subject Table of Fortran 90 Intrinsic Functions (continued)

Type Intrinsic | Description

R AINT (X [,K]) Truncate X to a real whole number.

R ANINT (X [,K]) Real whole number nearest to X.

C CHAR (I [,K] Character in position | of processor collation.

z CMPLX (X [, YI[,K]) Convert real(s) to complex type, of given kind.

I INT (A [K]) Convert A to integer type, of given kind.

L LOGICAL (L [,K]D Convert L to logical of kind K.

I NINT (X [,K]) Integer nearest to real X, of the stated kind.

R REAL (A [,K]) Convert A to real type, of type K.

LOCATION

I IACHAR (C) Position of character C in ASCII collating sequen

I ICHAR (C) Position of character C in processor collation.

I INDEX (S,S_SUB [,L_BACK]) Left starting position of S SUB within S (or right).

LV MAXLOC (N _ARRAY [,M]) Vector location(s) of ARRAY maximum, passing N

LV MINLOC (N _ARRAY [,M]) Vector location(s) of ARRAY minimum, passing M.

I SCAN (S,S_SET [,L_BACK)]) Left characterindex in S found inSSET; (or right).

LOGICAL

L ALL (M [,D]) True if all mask, M, terms are true, along D.

L ALLOCATED (*_ARRAY) True if the array is allocated.

L ANY (M [,D]) True if any mask, M, term is true, along D.

L ASSOCIATED (P [,T]) True if pointer, P, is associated with any target, of

L BTEST (I,I_POS) True if bitlocation I_POS of integer | has value on

N,L DOT_PRODUCT (V\V_2) Dot product of vectors V and V2.

B IAND (1,1 _2) Logical AND on the bits of l and 1 2.

B IEOR (1,1_2) Exclusive OR on the bits of | and._I2.

B IOR (I,1_2) Inclusive OR on the bits of | and_I2.

B ISHFT (I,I_SHIFT) Logical shift of bits of | by I_SHIFT, pad with 0.

L LGE (S,5.2) True if Sis> S_2 in ASCII collating sequence.

L LGT (S,5-2) True if S follows S_2 in ASCII collating sequence|

L LLE (S,S-2) True if Sis<to S_2 in ASCII collating sequence.

L LLT (S,S_2) True if S precedes S2 in ASCII collating sequence.

N,L MATMUL (MATRIX,MATRIX _2) Conformable matrix multiplication.

L LOGICAL (L [,K]D Convert L to logical of kind K.

I NOT (1) Logical complement of the bits of integer I.

L PRESENT (OPTIONAL) True if optional argument is present in call.

MASK, or MASK OPTIONAL ARGUMENT

L ALL (M [,D]) True if all mask, M, terms are true, along D.

L ANY (M [,D]) True if any mask, M, term is true, along D.

I COUNT (M [,D]) Number of true mask, M, terms, along dimension

LV MAXLOC (N _ARRAY [,M]) Vector of location(s) of ARRAY max’s, passing M

N MAXVAL (N _ARRAY [,D] [,M]) Value of ARRAY maximum, along D, passing M.

* MERGE _TRUEx_FALSE,M) Usex_TRUE if M is true orx_ FALSE otherwise.

LV MINLOC (N _ARRAY [,M]) Vector location(s) of ARRAY minimum, passing M.

N MINVAL (N _ARRAY [,D][,M]) Value of ARRAY minimum, along D, passing M.

*V PACK (x_ARRAY,M [,V _PAD]) Pack ARRAY for true M into vector, pad fron
V _PAD.

A PRODUCT (A_ARRAY [,D] [[M]) Product of ARRAY terms, along D, for mask M.

A SUM (A _ARRAY [,D][,M]) Sum of ARRAY terms, along D, passing mask M.

MATHEMATICAL FUNCTIONS

R

ACOS (X)

Arc cosine (inverse cosine) function of real X.

Ce.

.

T.

D

D.

©2001 J.E. Akin

(continued)

26

Subject Table of Fortran 90 Intrinsic Functions (continued)

MATRICES (See ARRAYS)
N,L DOT_PRODUCT (V,V_2)

* TRANSPOSE (MATRIX)

NUMBER MODEL
DIGITS (N)

EPSILON (X)
EXPONENT (X)
FRACTION (X)

HUGE (N)

NEAREST (X,Y)
RADIX (N)

RANGE (A)
RRSPACING (X)
SCALE (X,1)
SET_EXPONENT (X,1)
SPACING (X)

TINY (N)

UMERIC FUNCTIONS
ABS (A)
AIMAG (Z)
ANINT (X [,K])
CEILING (X)
CMPLX (X [, YI[,K])
CONJG (2)
DBLE (A)
DPROD (X,Y)
FLOOR (X)
INT (A [K])
MAX (N,N _2[[N_3,...])
MIN (N,N_2 [[N_3,..])
MOD (N,N_2)
MODULO (N,N_2)
REAL (A [K])
SIGN (N,N_2)

PADDING
B ISHET (1,1_SHIFT)

Z2VZ2Z2Z2Z2- "D AIONNTDTDTIOP>PZ DDOVDOVDIOVDND- — 0203102

Type Intrinsic Description

R ASIN (X) Arcsine (inverse sine) function of real X.

R ATAN (X) Arctangent (inverse tangent) function of real X.

R ATAN2 (Y,X) Arctangent for argument of complex number (X, Y).
R COS (R.2) Cosine function of real or complex argument.

R COSH (X) Hyperbolic cosine function of real X.

R,Z EXP (R_2) Exponential function of real or complex argument.
R LOG (R_2) Natural logarithm of real or complex number.

R LOG10 (X) Common (base 10) logarithm function of real X.
R,Z SIN(R_-2) Sine function of real or complex number.

R SINH (X) Hyperbolic sine function of real X.

R TAN (X) Tangent function of real X.

R TANH (X) Hyperbolic tangent function of real X.

N,L MATMUL (MATRIX,MATRIX _2)

Dot product of vectors V and V2.
Conformable matrix multiplication.
Matrix transpose of any type matrix.

Number of significant digits for N, e.g. 31.
Number« 1, for numbers like X, e.g. £—23.
Exponent part of the model for real X.
Fractional part of the model for real X.
Largest number for numbers like N, e.gx228.
Nearest number at X in the direction of sign Y.
Base of the model for numbers like N, e.g. 2.
Decimal exponent range for A, e.g. 37.
Reciprocal of relative spacing of numbers near X
Return X times kx|, where base b = RADIX (X).
Real with mantissa part of X and exponent part of I.
Absolute spacing of numbers near X, e.g«27.
Smallest positive number, like N, e.g-2-126.

Absolute value of A.

Imaginary part of complex number.

Real whole number nearest to X.

Least integer greater than or equal to real X.
Convert real(s) to complex type, of given kind.
Conjugate of complex number Z.

Convert A to double precision real.

Double precision real product of two real scalars,
Greatest integer less than or equal to X.

Convert A to integer type, of given kind.
Maximum value of two or more numbers same type.
Minimum value of two or more same type numbeys.
Remainder for NL2,i.e., N-INT(N/N_2)xN_2.
Modulo, N-FLOOR(N/NL 2)xN _2.

Convert A to real type, of type K.

Absolute value of N times sign of same type R.

Logical shift of bits of | by L SHIFT, pad with 0.

©2001 J.E. Akin

(continued)

27

Subject Table of Fortran 90 Intrinsic Functions (continued)

call
call

—VXVOVXIVAD

>r»zZzzZz -

*
*

RANDOM NUMBER

RANDOM_ NUMBER (X)
RANDOM_ SEED ([I_SIZE]
LI-V_P][I-V_G])

REALS

AINT (X [,K])

ANINT (X [,K])

AMAXO (1,12 [,I13])

AMINO (1,12 [,I3])

REAL (A [,K])

SELECTED_REAL _KIND ([I]
LI-1])

REDUCTION

ALL (M[,D])

ANY (M [,D])

COUNT (M [,D])

MAXVAL (N _ARRAY [,D] [,M])
MINVAL (N _ARRAY [,D] [,M])
PRODUCT (A_ARRAY [,D] [,M])
SUM (A _ARRAY [,D] [M])

RESHAPING ARRAYS

CSHIFT (_ARRAY,| _SHIFT [,D])
EOSHIFT &_ARRAY,| _SHFT
[x—FIL][.D])

%V PACK (x_ARRAY,M [V _PAD])

* RESHAPE &_ARRAY,| _V _SHAPE
[,«_PAD] [V _ ORDER])

* UNPACK (V,M,*_USE)

REVERSE ORDER

| INDEX (S,S_SUB [,L_BACK])

| SCAN (S,S_SET [,L_BACK])

| VERIFY (S,S_SET [,L_BACK])

SHIFTS

* CSHIFT (_ARRAY,I _SHIFT [,D])

* EOSHIFT ¢_ARRAY,| _SHIFT
[,x—FILL][,D])

B ISHFT (1,1_SHIFT)

B ISHFTC (1,1_ SHIFT [,I_SIZE])

Type Intrinsic | Description
*V PACK (x_ARRAY,M [,V _PAD]) PackarrAy for true M into vector, pad froma _ PAD.
* RESHAPE & _ARRAY,| _V _SHAPE
[,x_PAD] [,V _ORDER)) Reshape ARRAY to vector SHAPE, pad, re-order.
POINTER
L ASSOCIATED (P [,T]) True if pointer, P, is associated with any target, of
PRESENCE
L PRESENT (OPTIONAL) True if optional argument is presentin call.

Pseudo-random numbers in rarige X < 1.

Initialize random number generator.

Truncate X to a real whole number.

Real whole number nearest to X.

Maximum real from list of integers.
Minimum real from list of integers.

Convert A to real type, of type K.

Real with precision, |, and exponent ranger.l

True if all mask, M, terms are true, along D.

True if any mask, M, term is true, along D.
Number of true mask, M, terms, along dimension
Value of max ARRAY term, along D, passing M.
Value of min ARRAY term, along D, passing M.
Product of ARRAY terms, along D, for mask M.
Sum of ARRAY terms, along D, passing mask M,

Perform circular shift out and in forISHIFT terms.

End-off shift ARRAY, and fill, in dimension D.
Pack ARRAY for true M into vector, pad fron
V _PAD.

Unpack V for true elements of M, into USE.

Left starting position of SSUB within S (right-
most).

Left character index in S found in _SSET; (right-
most).

First position in S not found in SSET, (or last).

Perform circular shift out and in forISHIFT terms.

Perform end-off shift, and fill, in dimension D.
Logical shift of bits of | by L SHIFT, pad with O.
Logical circular shift of L SIZE rightmost bits of I.

Reshape ARRAY to vector SHAPE, pad, re-ordey.

(continued)

©2001 J.E. Akin

28

T.

D.

Subject Table of Fortran 90 Intrinsic Functions (continued)

[I _RAT][,| —-MX])

VECTOR (See ARRAYS)

N,L DOT_PRODUCT (V,\V-2) Dot product of vectors V and V2.
1LV LBOUND (x_ARRAY [,D]) ARRAY lower bound(s) vector, along D.
LV MAXLOC (N _ARRAY [,M]) Location(s) of maximunmRrRAY term, passing M.
LV MINLOC (N _ ARRAY [,M]) Location(s) of minimum ARRAY term, passing M
*V PACK (x_ARRAY,M [,V _PAD]) Pack ARRAY for true M into vector, pad from
V _PAD.
* RESHAPE _ARRAY,| _V _SHAPE
[,x_PAD] [,V _ORDER]) Reshape ARRAY to vector SHAPE, pad, re-order.
LV SHAPE (x_ARRAY) ARRAY (or scalar) shape vector.
* TRANSFER §&_ARRAY, V _MOLD
[,1 -SIZE]) Same representation as ARRAY, but type of MOLD.
I,V UBOUND (x_ARRAY [,D]) ARRAY upper bound(s) vector, along dimension
B.3 Syntax of Fortran 90 Statements

[

Type Intrinsic | Description
STRING
C ADJUSTL (S) Adjust S left, move leading blanks to trailing blanks.
C ADJUSTR (S) Adjust S right, move trailing to leading blanks.
I INDEX (S,S_SUB [,L_BACK]) Left starting position of S SUB within S (or right).
I LEN (S) Total character string length.
I LEN_TRIM (S) Length of S without trailing blanks.
L LGE (S,5_2) True if Sis>to S_2 in ASCII collating sequence.
L LGT (S,S_2) True if S follows S_2 in ASCII collating sequence}
L LLE (S,S_2) True if Sis<to S_2 in ASCII collating sequence.
L LLT (S,S_2) Trueif S precedes S2 in ASCII collating sequence.
S REPEAT (S,LCOPIES) ConcatenatesICOPIES of string S.
I SCAN (S,S_SET [,L_BACK]) Left characterindex in S found in.SSET; (or right).
S TRIM (S) Remove trailing blanks from a single string.
I VERIFY (S,S_SET [,L_BACK]) First position in S not found in SSET, (or last).
TARGET
L ASSOCIATED (P [,T]) True if pointer, P, is associated with any target, or T.
TIME
call DATE_AND _TIME ([S_DATE] Real-time clock data.

[[S_TIME] [,S _ZONE]

[l _V _VALUES])
call SYSTEM_CLOCK ([_NOW] Integer data from real-time clock.

U O

The following is a list of the recommended Fortran90 statements. Additional statements are allowed, but
have been declared obsolete, and are expected to be deleted in future standards. Thus, they should not be
utilized in new programs. They are appended to the end of this list. Below we list the standard syntax for
the Fortran90 statements. In some cases the most common simple form of a statement is shown before
it's more general options. Such optional features are shown included in bracketsand a vertical

bar| means “or.” Note that the new attribute terminator symbolis always optional, but its use is
recommended.

The following abbreviations are employed:

arg=argument,

i _=integer, r_=real, s =string, spec=specifier, and hdtgpe] means CHARACTER COMPLEX |
INTEGER | LOGICAL | REAL, or a user defined name given in a TYPE statement. Recall that F90

allows variable names to be 31 characters long and they may include an underscore (but F77 allows only
6 characters and no underscore). F90 lines may contain up to 132 characters (but just 72 in F77). All

©2001 J.E. Akin

29

attr=attribute, exp=expression,

| | MATLAB | C++ F90
Pre-allocate A(100)=0 int A[100]; @ integer A(100)
linear array
Initialize to a for (j=0; j<100; j++) A=12

constant value of

for j=1:100 % slow
A()=12

end

Afi]=12;

12 % better way
A=12*ones(1,100)
Pre-allocate A=ones(10,10) int A[10][10]; integer A(10,10)
two-dimensional
array

aC++ has a starting subscript of 0, but the argument in the allocation statement is the array’s size.

Table B.41 Array initialization constructs.

| Action | MATLAB | C++ | F90
Define A=zeros(2,3) 2 int A[2][3]; integer,dimension(2,3)::A
size
Enter A=[1,7,-2; int ARIBE | A(L)=(1,7,-2])
. {1,7,2 },)=
rows 3, 4, 6]; laie A(2,)=(/3,4,61)
};

a0ptional in MATLAB, but improves efficiency.

Table B.42 Array initialization constructs.

standard F77 statements are a sub-set of F90. Attribute options, and their specifiers, for each statement
are given in the companion table "Fortran 90 Attributes and Specifiers”. The numerous options for the
INQUIRE statement are given in the table entitled “Options for FO0 INQUIRE.”

In addition to the statements given below F90 offers intrinsic array operations, implied do loops,
vector subscripts, and about 160 intrinsic functions. Those functions, with their arguments, are given
in tables “Alphabetical Table of Fortran 90 Intrinsic Functions and Subroutines,” and “Subject Table of
Fortran 90 Intrinsic Functions and Subroutines.”

F90 Syntax

I preceeds a commentin F90

in column one denotes a comment line in F77

& continues a line in F90 (must be in column 6 for F77)

; terminates a statement in F90 (allows multiple statements per line)

variable = expressianor_statement ! is an assignment (column 7 in F77)

ALLOCATABLE [::] array _name[(extents)] [, arrayname[(extents)]]

ALLOCATE (array_name)

ALLOCATE (array_name [, STAT=status] [,arrayname [, STAT=status]])

BACKSPACE i_exp ! file unit number

BACKSPACE ([UNIT=]i_value [, IOSTAT=L variable] [, ERR=L label])

C in column one denotes a comment line in F77

CALL subroutine_name [([args])]

CASE (range list) [select._ name] ! purpose

CASE DEFAULT [select. name] ! purpose

CHARACTER LEN=i_value [::] s_list

CHARACTER [(LEN=i_value| * [, KIND=]i _kind)] [[, attr_list] ::] s _list

CHARACTER [(i—value| *, [KIND=]i _kind)] [[, attr_list] ::] s _list
(continued)

©2001 J.E. Akin 30

F90 Syntax (continued)

CHARACTER [([KIND=i _kind] [, LEN=i _value| *)] [[, attr _list] ::] s_list
CLOSE (i_value) ! unit number

CLOSE ([UNIT=]i_value [, ERR=L label] [, IOSTAT=i_variable] [, STATUS=exp])
COMPLEX [::] variable_list

COMPLEX [([KIND=]i _kind)] [[, attr _list] ::] variable_list
CONTAINS !internal definitions follow

CYCLE !current do only for a purpose

CYCLE [nested do_name] ! and terminate its sultlo’s for a purpose
DEALLOCATE (array_name)

DEALLOCATE (array_name [, STAT=status] [, arrayname [, STAT=status]])
DIMENSION array_name(extents) [, arrayname(extents)]

DO !forever

DO i_variable = iL_start, i_stop !loop_name_or_purpose

DO [i _variable = L start, i_stop [, i_inc]] ! loop_name_or_purpose
DO [i_label,] [i_variable = L start, i_stop [, i_inc]] ! loop_name
[loop_name:] DO [L variable = L start, L stop [, i_inc]] ! purpose
[loop_name:] DO [label,] [i_variable = L_start, i_stop [, i_inc]]

DO WHILE (logical_expression) ! obsolete, use DO-EXIT pair

DO [i_label,] WHILE (logical_expression) ! obsolete-obsolete
[name:] DO [L label,] WHILE (logical_expression) ! obsolete

ELSE [if _name]

ELSE IF (logical expression) THEN [if name]

ELSE WHERE (logical expression)

END [name] ! purpose

END DO [do_name] ! purpose

END FUNCTION [function_name] ! purpose

END IF [if _name] ! purpose

END INTERFACE ! purpose

END MODULE [module_name] ! purpose

END PROGRAM [program name] ! purpose

END SELECT [select name] ! purpose

END SUBROUTINE [name] ! purpose

END TYPE [type_name] ! purpose

END WHERE ! purpose

ENDFILE i_exp ! for file unit number

ENDFILE ([UNIT=]i _value [, IOSTAT=L variable] [, ERR=L label])
ENTRY entry_name [([args])] [RESULT (variablename)]

EXIT !currentdo only for a purpose

EXIT [nested_do_name] ! and its subdo’s for a purpose
EXTERNAL program._list

i _label FORMAT (specificationand_ edit_list)

FUNCTION name ([args]) ! purpose

FUNCTION name ([args]) [RESULT (variablename)] ! purpose
[type] [RECURSIVE] FUNCTION name ([args]) [RESULT (variahleame)]
[RECURSIVE] [type] FUNCTION name ([args]) [RESULT (variahleaame)]
GO TOi_label !for_a_reason

IF (logical_expression) executahlestatement

[name:] IF (logical expression) THEN ! statepurpose

IMPLICIT type (letter_list) ! F77 (a-h,0-z) real, (i-n) integer
IMPLICIT NONE ! F90 recommended default

INCLUDE source_file _path_name ! purpose

INQUIRE ([FILE=]'name_string’ [, see_ INQUIRE_table]) ! re file

(continued)

©2001 J.E. Akin 31

F90 Syntax (continued)

INQUIRE ([INAME=]s_variable [, see INQUIRE_table]) ! re file

INQUIRE (IOLENGTH-=i_variable [, see INQUIRE _table]) ! re output
INQUIRE ([UNIT=]i _value [, see INQUIRE_table]) ! re unit

INTEGER [::] variable_list

INTEGER [([KIND=]i _kind)] [[, attr _list] ::] variable_list

INTENT ([IN | INOUT | OUT]) argument list

INTERFACE ASSIGNMENT (H - | * | /| =| **) ! user extension
INTERFACE OPERATOR (.operator.) ! user defined

INTERFACE [interface.name]

INTRINSIC function_list

LOGICAL [::] variable_list

LOGICAL [([KIND=]i _kind)] [[, attr _list] ::] variable_list

MODULE PROCEDURE programlist

MODULE module_name ! purpose

NULLIFY (pointer_list)

OPEN (i_value) ! unit number

OPEN ([UNIT=]i_value [, ERR=L label] [, IOSTAT=i_variable] [, other spec])
OPTIONAL [::] argument list

PARAMETER (variable=value [, variable=value])

POINTER [::] name[(extent)] [, name[(extent)]] ! purpose

PRINT *, output_list ! default free format

PRINT *, (io_implied_do) ! default free format

PRINT ’(formats)’, output list ! formatted

PRINT ’(formats)’, (io—implied_do) ! formatted

PRIVATE [[::] module_variable_list] ! limit access

PROGRAM [program.name] ! purpose

PUBLIC [[::] module_variable_list] ! default access

READ *, input_list ! default free format

READ *, (io _implied_do) ! default free format

READ ’(formats)’, input_list ! formatted

READ ’'(formats)’, (io_implied_do) ! formatted

READ (JUNIT=]i _value, [FMT=]i_label [, io_spec_list]), input_list ! formatted
READ ([UNIT=]i _value, s_variable [, io_spec_list]), input_list ! formatted
READ ([UNIT=]i _value, '(formats)’ [, io_spec._list]), input_list ! formatted
READ (i_value), input_list ! binary read

READ (JUNIT=]i _value, [, io_spec_list]), input_list ! binary read

READ (s_variable, [FMT=]i_label), input_list ! internal file type change
READ ([UNIT=]s_variable, [FMT=]i_label [, io_spec_list]), input_list ! internal file change
REAL [:1] variable_list

REAL [([KIND=]i _kind)] [[, attr_list] ::] variable_list

RECURSIVE FUNCTION name ([args]) [RESULT(variahleame)] ! purpose
[type] RECURSIVE FUNCTION name ([args]) [RESULT (variableame)] ! purpose
RECURSIVE SUBROUTINE name [([args])] ! purpose

RETURN ! from subroutine name

REWIND i_exp ! file unit number

REWIND (JUNIT=]i _value [, IOSTAT=L variable] [, ERR=L label])

SAVE [[::] variable_list]

[name:] SELECT CASE (value)

SEQUENCE

STOP ['stop.message string’]

SUBROUTINE name [([args])] ! purpose

SUBROUTINE name [([args])] [args, optionakrgs] ! purpose

(continued)

©2001 J.E. Akin 32

F90 Syntax (continued)
[RECURSIVE] SUBROUTINE name [([args])] ! purpose
TARGET [::] name[(extent)] [, name[(extent)]]
TYPE (type_name) [[, attr_list] ::] variable_list
TYPE [, PRIVATE | PUBLIC] name
USE module_name [, ONLY: list_in_module_name] ! purpose
USE module name [, new. var_or_sub=>old_name] ! purpose
WHERE (logical array_expression) ! then
WHERE (logical array_expression) arrayvariable = array expression
WRITE *, output_list ! default free format
WRITE *, (io _implied_do) ! default free format
WRITE '(formats)’, output_list ! formatted write
WRITE ’(formats)’, (io_implied_do) ! formatted write
WRITE ([UNIT=]i _value, [FMT=]i_label [, io_spec_list]), output_list ! formatted write
WRITE ([UNIT=]i _value, s_variable [, io_spec_list]), output_list ! formatted write
WRITE ([UNIT=]i _value, '(formats)’ [, io_spec_list]), output_list ! formatted write
WRITE (i_value), output list ! binary write
WRITE (i _value), (io_implied_do) ! binary write
WRITE ([UNIT=]i _value, [, io_spec_list]), output_list ! binary write
WRITE (s_variable, [FMT=]i_label), output list ! internal file type change
WRITE ([UNIT=]s_variable, [FMT=]i_label [, io_spec._list]), output_list ! internal file change

Obsolescent statements are those from Fortran77 that are redundant and for which better methods are
available in both Fortran77 and Fortran90.

| Obsolete Syntax

ASSIGN i_label TO i_variable

BLOCK DATA [block _data_name]

COMMON [/common_block_name/] r_variable_list, i _variable_list
[i _label] CONTINUE ! from do [da_name]

DATA variable_list / value_list /

DATA (array_implied_do) / value_list /

DOUBLE PRECISION [[, attr_list] ::] variable_list

DO [i _label,] [r_variable = r_start, r_stop [, r_inc]] ! real control
DO _CONTINUE_pair

[name:] DO [L label,] WHILE (logical_expression) ! obsolete
END BLOCK DATA [block _data_name]

EQUIVALENCE (variable_1, variable_2) [, (variable_3, variable_4)]
GO TO (i_label_1,i_label_2,...,i_label_n)[,] i _variable

IF (arithmetic_exp) i_label_neg, i_label_zero, i_label_pos
NAMELIST /group_name/ variable list

PAUSE ! for human action

RETURN alternates

statement function (args) = expression

The attributes lists for the type declarations, e BEAL are ALLOCATABLE DIMENSION INTENT,
OPTIONAL KIND, POINTER PARAMETERPRIVATE, PUBLIC, SAVE, andTARGET those forOPENand
CLOSEareACCESSACTION, BLANK andDELIM; while those forREADandWRITEare ADVANCEEND
EORERR andFMT.

©2001 J.E. Akin 33

| MATLAB | C++ | F90 |

Addition
C=A+B for (i=0; i<10; i++) C=A+B
C=A+B for?o j<10; ++ﬁ {
) ClIiI=ATIGT+ B0
}
Multiplication | _,.» for (i=0: i<10; i++) { C=matmul(A,B)
C=AB for ? =0; j<10 j*+t) {
clillil = o;
for =0; k<10; k++) |
) clill] += ALKI*BIKI];
}
}
Scalar
multiplication | C=a*B for (i=0; i<10; i++) { C=a*B
for (j=0; j 10;
C=aB r}?um eamt™Y !
}
Matrix
inverse . a _ a
B=A-! B=inv(A) B=inv(A)

aNeither C++ nor F90 have matrix inverse functions as part of their language definitions nor as part of standard collections
of mathematical functions (like those listed in Table 4.7). Instead, a special function, usually drawn from a library of numerical
functions, or a user defined operation, must be used.

Table B.43 Elementary matrix computational routines.

C++ | int* point, vector, matrix

point = new type _tag

vector = new type _tag [space _1]
if (vector == 0) {error _process }
matrix = new type _tag [space _1 * space _2]

delete matrix

delete vector
delete point

F90 | type _tag, pointer, allocatable :: point
type _tag, allocatable :: vector (:), matrix (:,:)

allocate Epoint)

allocate (vector (space _1), STAT = my _int)

if (my _int /= 0) error _process

allocate (matrix (space _1, space _2))

deallocate (matrix)

if 2associated (point, target _name)) pointer _action...
if (allocated (matrix)) matrix _action...

deallocate (vector)
deallocate (point)

Table B.44 Dynamic allocation of arrays and pointers.

©2001 J.E. Akin 34

SUBROUTINE AUTOARRAYS (M,N, OTHER)
USE GLOBAL CONSTANTS ! FOR INTEGER K
IMPLICIT NONE
INTEGER, INTENT (IN) :: M,N
type _tag, INTENT (OUT) :: OTHER (M,N) ! dummy array

I Automatic array allocations
type _tag :: FROM _USE (K)
type _tag :: FROM _ARG (M)
type _tag :: FROM _MIX (K,N)

| Automatic deallocation at end of scope
END SUBROUTINE AUTOARRAYS

Table B.45 Automatic memory management of local scope arrays.

module derived_class_name
use baseclass_name
I new attribute declarations, if any

contains

I new member definitions

end module derived.class_name

Table B.46 F90 Single Inheritance Form.

module derived_class name
use baseclass name, only: list of _entities
I new attribute declarations, if any

contains

I new member definitions

end module derived_class_name

Table B.47: F90 Selective Single Inheritance Form.

module derived_class name
use baseclass name, local name = base_entity_name
I new attribute declarations, if any

contains

I new member definitions

end module derived_class_name

Table B.48 F90 Single Inheritance Form, with Local Renaming.

©2001 J.E. Akin 35

module derived_class_name
use baselclass name

use base2class name

use base3class name, only: list. of _entities

use base4dclass name, local name => base_entity_name

I new attribute declarations, if any

contains

I new member definitions

end module derived.class_name

Table B.49 F90 Multiple Selective Inheritance with Renaming.

©2001 J.E. Akin 36

Examples of F90 Statements

The following is a list of examples of the recommended Fortran90 statements. Some have been
declared obsolete, and are expected to be deleted in future standards. Thus, they should not be utilized
in new programs. They are noted in the comments. In some cases the most common simple form
of a statement is shown along with it's more general options. Note that the new attribute terminator
symbol :: is always optional, but its use is recommended. While Fortran is not case-sensitive, this
table employs upper case letters to denote standard features, and lower case letters for user supplied
information. The following abbreviations are employed: arg=argument, attr=attribute, exp=expression,
i _=integer, L =logical, r_=real, s_=string, spec=specifier,z=complex.

Recall that F90 allows variable names to be 31 characters long and they may include an underscore
(but F77 allows only six characters and no underscore). F90 lines may contain up to 132 characters (but
just 72 in F77). All standard F77 statements are a sub-set of F90.

The attributes lists for the type declariations, ®FAL areALLOCATABLE, DIMENSION, INTENT,
OPTIONAL, KIND, POINTER, PARAMETER, PRIVATE, PUBLIC, SAVE, and TARGET Those op-
tional attributes forOPENare ACCESS= [DIRECT, SEQUENTIAL], ACTION = [READ, READWRITE,

WRITH, BLANK= [NULL, ZERQ, DELIM = [APOSTROPHE, NONE, QUOJfEERR= i_label, FILE =
S_name,FORM= [FORMATTED, UNFORMATTEDOSTAT = i_var, PAD= [NO, YEY, POSITION =
[APPEND, ASIS, REWIND, RECL=i_len, STATUS=[NEW, OLD, REPLACE, SEARCH, UNKNOJWN
andUNIT =i _unit; while CLOSEutilizes onlyERR, IOSTAT, STATUS, andUNIT.

The io_spec._list options forREADandWRITE are ADVANCE= [NO, YES], END=i_label, EOR=
i _label,ERR=i _label,FMT=[*, i _label, s_var],IOSTAT = i_var,NML= var_list, REC= i _exp,SIZE
=i_size, andJNIT =i _unit.

Fortran Statement Examples

s_fmt ="(2F5.1)

Name | Examples | Comments
Allocatable | ALLOCATABLE :: force, stiffness By name
ALLOCATABLE :: force(:), stiffness(:,:) Ranks
Allocate ALLOCATE (hyper_ matrix(5, 10, 3))
ALLOCATE (force(m))
ALLOCATE (array_name(3, 3, 3, 3), STAT=ierr) Error status
Assign ASSIGN 9 TO k Obsolete
Assignment | c="b’ Character
s="abc String
s =c//’abc’ Concatenation
s = string(j:m) Sub-string

Stored format

[=1_1.0R.1_2

[=m< =80

poor = (final> = 60) .AND. (final< 70)
proceed = .TRUE.

Logical

n=n+1 Arithmetic
x=b'1010’ Binary
z=(0.0,1.0) Complex
r=SOQRT (5.) Function
converged = (ABS (x0 — x¥x 2*SPACING (x))

x=2zB Hexadecimal
k=123 Integer
Xx=0'12’ Octal
r=321. Real
a=23.;)=120;ans=.TRUE,; Semicolon
k= SELECTED_INTEGER_KIND (20) Kind

m = SELECTED_REAL _KIND (16, 30)

(continued)

©2001 J.E. Akin 37

Fortran Statement Examples (continued)

Name | Examples Comments
long = SELECTED_REAL _KIND (9, 20)
pi = 3.1459265 long
a=b+c Matrix add
d = MATMUL (a, b) Matrix multiply
e = TRANSPOSE (d) Matrix transpose
f=0;9=(/2.,4.,6.)) Matrix initialize
B = Al;, n:(:-1) Matrix flipped
x=((k,k=0,n)N*d Implied do
kth_row => a(k,:) Pointer
corners = a(l:n:(n-1), 1:m:(m-1))
p_2=>r
student_record%rank =51 Defined type
patient_data%city = houston
sqrt(x) = DSQRT(x) ! function statement Obsolete
Backspace | BACKSPACE i_exp Compute unit
BACKSPACE 8 Unit
BACKSPACE (UNIT=9, IOSTAT=i, ERR=5) Errorgoto
BACKSPACE (9, IOSTAT=ia ok, ERR=99)
BACKSPACE (UNIT=9, IOSTAT=ia_ok, ERR=99)
BACKSPACE (8, IOSTAT=ia_0k) I/O status
Block Data | BLOCK DATA ! Obsolete
BLOCK DATA winter ! Obsolete Named
C C in column one denotes a comment line in F77 Obsolete
* in column one denotes a comment line in F77 Obsolete
I anywhere starts a comment line in F90
Call CALL subl (a, b)
CALL sub2 (a, b, *5) ! Obsolete, use CASE Altreturnto 5
CALL sub3 No arguments
CALL subroutine_name (args, optionalargs) Optional arg
Case CASE (range list) See SELECT
CASE (range list) select. name Named
Case CASE DEFAULT See SELECT
Default CASE DEFAULT select name Named
Character CHARACTER (80) s, s 2*3(4)
CHARACTER *16 a, b, c
CHARACTER * home_team :: recommended
CHARACTER (*), INTENT(IN) :: home_team Intent
CHARACTER (LEN=3) :: b ="xyz’ Initialize b
CHARACTER LEN=40 :: monday, wednesday, friday
CHARACTER (LEN=40), attr_list :: last, first, middle
CHARACTER (40), attr_list :: name, state
CHARACTER (*), PARAMETER :: reply = “Invalid Data”
CHARACTER (*, KIND=greek), attr_list :: s1_list Kind
CHARACTER (*, KIND=greek), attr_list :: last, first, middle
CHARACTER (KIND=cyrillic, LEN=40) :: name, state
CHARACTER (KIND=cyrillic, *), attr_list :: s_list
Close CLOSE (7) Unit number
CLOSE (UNIT=k)
CLOSE (UNIT=8, ERR=90, IOSTAT=i) Error go to
CLOSE (8, ERR=99, IOSTAT=iook, STATUS='"KEEP”’) I/O status

©2001 J.E. Akin

(continued)

38

Fortran Statement Examples (continued)

Name Examples Comments

CLOSE (9, ERR=99, IOSTAT=i0, STATUS='"DELETE’) File status
CLOSE (UNIT=8, ERR=95, IOSTAT=ia 0k)

Common COMMON /name/ h, p,t ! Obsolete Named common
COMMON p, d, g(m,n) ! Obsolete Blank common

Complex COMPLEX u, v, w(3, 6) :: recommended
COMPLEX:: u=(1.0,1.0), v =(1.0,10.0) Initialize u and v
COMPLEX :: variable_list
COMPLEX attr_list :: variable_list
COMPLEX (KIND=i2 _kind), attr_list :: variable_list Kind

Contains CONTAINS Internal definitions

CONTAINS
FUNCTION mine (b)

END FUNCTION mine

Or subroutines

Continuation

I'any non-block character in column 6 flags continuation

F77 obsolete

& at the end flags continuation to next line F90 standard
& at the beginning flags continuation from above line
a_long_name = a constant value* &
another_value ! on following line
a_long_name_here_is_set_to = value
& * another_value ! continued from above
Continue 100 CONTINUE Obsolete
Cycle CYCLE Current do only
CYCLE nested do_name Terminate sub dos
Data DATA a,s/4.01,’z2'/ Obsolete
DATA s_fmt/’(2F5.1)"/ Stored format
DATA (r(k), k=1,3)/0.7,0.8,1.9/ Implied do
DATA array (4,4)/1.0/ Single value
DATA bit _val /b’0011111’/ Binary
Deallocate DEALLOCATE (force) File name
DEALLOCATE (force, STAT=L err) Error status
Dimension DIMENSION array (4, 4)
DIMENSION v(1000), w(3)=(/1.,2.,4. /) Initialize w
DIMENSION force(20), stiffness(:,:)
DIMENSION (5,10,3) :: triplet :: recommended
INTEGER, DIMENSION (:,:) :: material, nodedist Typed
REAL, DIMENSION(m, n):: a, b
REAL, DIMENSION (:,:) :: force, stiffness
REAL, DIMENSION(5,10,3)INTENT(IN) :: triplet Intent
Do DO 100 j =init, last, incr ! Obsolete Labeled do
100 CONTINUE Obsolete
DO j = init, last Unlabeled do
END DO
DO ! forever Unlabeled do

END DO ! forever

DO WHILE (diff <= delta)
END DO

Unlabeled while

DO 100 WHILE (diff < = delta) ! Obsolete

Labeled while

(continued)

©2001 J.E. Akin 39

Fortran Statement Examples (continued)

Name Examples Comments
100 CONTINUE Obsolete
DO Forever
DO k =i_start, i_stop Integer range
DO k =i_start, i_stop, i_inc Increment
DO 10, k = i_start, i_stop Obsolete
do_name: DO k = Lstart, i_stop, i_inc Named
do_name: DO 10, k =istart, i_stop, i_inc Named label
DO 10, r_variable = r_start, r_stop, r_inc ! Obsolete Real range
Do While DO WHILE (.NOT. converged) Use DO-EXIT pair
DO 10, WHILE (.NOT. converged) Obsolete
do_name: DO 10, WHILE (.NOT. converged) Obsolete
Double DOUBLE PRECISION a, d, y(2) Obsolete
Precision DOUBLE PRECISION :: a,d =1.2D3, y(2) Initialize D
DOUBLE PRECISION, attr list :: variable_list Obsolete
Else ELSE Then
ELSE leap year Named
Else If ELSE IF (k> 50) THEN
ELSE IF (days.in_year == 364) THEN
ELSE IF (days.in_year == 364) THEN leapyear Named
Elsewhere ELSEWHERE See WHERE
End END
END name Named
End Block END BLOCK DATA Obsolete
Data END BLOCK DATA block_data_name Obsolete
End Do END DO
END DO do_name Named
End Function] END FUNCTION function_name
END FUNCTION
End If END IF leap_year Named
END IF
End Interface| END INTERFACE
End Module | END MODULE my_ matrix_ operators
END MODULE
End Program| END PROGRAM program name
END PROGRAM
End Select END SELECT selectname Named
END SELECT
End END SUBROUTINE name
Subroutine | END SUBROUTINE
End Type END TYPE type_name See TYPE
END TYPE
End Where | END WHERE See WHERE
Endfile ENDFILE i _exp Compute unit
ENDFILE (UNIT=k) Unit number
ENDFILE k
ENDFILE (UNIT=8, ERR=95) Error go to
ENDFILE (7, IOSTAT=io_ ok, ERR=99) I/O status

ENDFILE (UNIT=8, IOSTAT=k, ERR=9)
ENDFILE (UNIT=9, IOSTAT=io_ok, ERR=99)

(continued)

©2001 J.E. Akin 40

Fortran Statement Examples (continued)

Name Examples Comments
Entry ENTRY secl (X, y) Arguments
ENTRY sec2 (al, a2, *4) ! Obsolete, use CASE Alternate returnto 4
ENTRY section No arguments
ENTRY entry_name RESULT (variablename) Result
Equivalence | EQUIVALENCE (v (1), a (1,1)) Obsolete
EQUIVALENCE (v, a)
EQUIVALENCE (x, v(10)), (p, g, d)
Exit EXIT Current do only
EXIT nested do_name Current & sub-dos
External EXTERNAL my_program
Format 10 FORMAT (2X, 213, 3F6.1, 4E12.2, 2A6,3L2) XIFEAL
10 FORMAT (// 2D6.1, 3G12.2) D,G
10 FORMAT (213.3, 3G6.1E3, 4E12.2E3) Exponentw
10 FORMAT ('a quoted string’, "another”, 12) Strings
10 FORMAT (1X, T10, A1, T20, Al) Tabs
10 FORMAT (5X, TR10, A1, TR10, Al, TL5, Al) Tab right, left
10 FORMAT ("Init=", 12, :, 3X, "Last=", 12) . stop if empty
10 FORMAT ('Octal ’, 06, ', Hex ' z6) Octal, hex
10 FORMAT (specification and_ edit_list)
Function FUNCTION z (a, b) Arguments
FUNCTION w (e, d) RESULT (a) Result
FUNCTION name (args)
FUNCTION name No argument
FUNCTION name (args) RESULT (variahl@ame)
INTEGER FUNCTION n (j, k) Type
INTEGER FUNCTION name (args)
COMPLEX RECURSIVE FUNCTION dat (args)
RECURSIVE REAL FUNCTION name (args)
Go To GO TO 99 Unconditional
GO TO (10,20,35,95), ivariable ! Obsolete Computed
If IF (arithmetic_exp) 95, 10, 20 ! Obsolete Arithmetic
IF (logic) RETURN Logical if
IF (logic)n=n+2
IF (logic) THEN if block
n=n+1
k=k+1
END IF
leap_year: IF (logical expression) THEN Named
IF (logic) THEN if else block
n=n+1
ELSE
k=k+1
END IF
IF (c=="a’) THEN if else-if block
na=na+1
CALL sub_a
ELSE IF (c =="b") THEN (Use CASE)
nb=nb+1
ELSE IF (c =='c’) THEN
nc=nc+1

(continued)

©?2001 J.E. Akin 41

Fortran Statement Examples (continued)

Name | Examples | Comments
CALL sub_c

END IF

Implicit IMPLICIT INTEGER (i-n) F77 default

Type IMPLICIT REAL (a-h,0-2) F77 default
IMPLICIT NONE Recommended F90
IMPLICIT CHARACTER *10 (f,1) Character
IMPLICIT COMPLEX (a-c,z) Complex
IMPLICIT TYPE (color) (b,g,r) Derived type
IMPLICIT LOGICAL (KIND=bit) (m) Logical

Include INCLUDE ’path/source.f’

Inquire INQUIRE (UNIT=3, OPENED=t_or_f) Opened
INQUIRE (FILE='mydata’, EXIST=t_or_f) Exists
INQUIRE (UNIT=3, OPENED=0k, IOSTAT=k) I/O status
INQUIRE (FILE="name_string’, see. INQUIRE _table) Re file
INQUIRE (NAME=s_variable, see INQUIRE _table) Re file
INQUIRE (IOLENGTH=i_var, see INQUIRE _table) Re output
INQUIRE (7, see INQUIRE _table) Re unit
INQUIRE (UNIT=8, see INQUIRE _table) Re unit

Integer INTEGER c, d(4) :: Recommended

INTEGER (long), attr_list :: variable_list
INTEGER, DIMENSION (4) :: a,d, e
INTEGER, ALLOCATABLE, DIMENSION(:,)) :: a, b Allocatable
INTEGER :: a=100,b,c=9 Initialize a & ¢
INTEGER :: i, j, k, I, m, n, month, year = 1996
INTEGER, attr_list :: variable_list

INTEGER (KIND=i2_kind), attr_list :: variable_list Kind

Intent INTENT (IN) :: credit_card_owners
INTENT (INOUT) :: amount_due
INTENT (OUT) income_rank

Interface INTERFACE ASSIGNMENT (=) User extension
INTERFACE OPERATOR (+) User extension
INTERFACE OPERATOR (-) User extension
INTERFACE OPERATOR (/) User extension
INTERFACE OPERATOR (*) User extension
INTERFACE OPERATOR (**) User extension
INTERFACE OPERATOR (.operator.) User defined
INTERFACE
INTERFACE interface name

Intrinsic INTRINSIC SQRT, EXP Functions

Logical LOGICAL c :: recommended
LOGICAL, ALLOCATABLE :: mask(:), mask_2(:,:) Allocatable
LOGICAL (KIND = byte) :: flag, status Kind
LOGICAL :: b=.FALSE., c Initialize b

Module MODULE PROCEDURE mat x _mat, mat x_vec Generics
MODULE my_matrix_ operators

Namelist NAMELIST /data/ s, n, d Obsolete

Nullify NULLIFY (pointer_list)

Open OPEN (7) Unit number
OPEN (UNIT=3, FILEZ data.test) Name
OPEN (UNIT=2, FILE= datd , STATUS =" old") File status

(continued)

©2001 J.E. Akin 42

Fortran Statement Examples (continued)

Name Examples Comments

OPEN (UNIT=3, IOSTAT=k) I/O status
OPEN (9, ERR =12, ACCESS'direct') Access type
OPEN (8, ERR=99, IOSTAT=ia0k) Error go to
OPEN (UNIT=8, ERR=99, IOSTAT=ia0k)

Optional OPTIONAL slow, fast Argument list
OPTIONAL :: argument list

Parameter PARAMETER (a= xyz"), (pi=3.14159) Character
PARAMETER (a="z", pi=3.14159) Real
PARAMETER (x=11,y = x/3) Computed
PARAMETER, REAL :: weight = 245.6 Type

Pause PAUSE ! for human action Obsolete

Pointer POINTER current, last :: recommended
POINTER :: name(4,5) Rank
REAL, POINTER :: y(:), x(,:,3) Type

Print PRINT *, a, | List-directed
PRINT *, output_list Default unformatted
PRINT *, (io_implied_do) Implied do
PRINT *, “The squre root of”, n} is’ , SQRT(n) Function
PRINT *, (4*k-1, k=1,10,3)
PRINT 10, a, j Formatted
PRINT 10, m_array Array
PRINT 10, (m(i), i =j,k) Implied do
PRINT 10, s(j:k) Substring
PRINT (A6, 13)", a, | Character, integer
PRINT FMT="(A6, I13)’, a, | Included format
PRINT data_namelist ! Obsolete Namelist
PRINT’ (formats) , output_list Formatted
PRINT’ (formats) , (io_implied_do) Implied do
PRINT’ (14) , (2*k, k=1,5)

Private PRIVATE
PRIVATE :: module_variable_list Specific items

Program PROGRAM my_job
PROGRAM

Public PUBLIC
PUBLIC :: module_variable_list Specific items

Read READ *, a, j List-directed
READ 1, a,j Formatted
READ 10, m_array Formatted array
READ 10, (m(i), i=j, k) Implied do
READ 10, s(i:k) Substring

READ '(A6, 13), a, i

Character, integer

READ (1, 2) X,y

READ (UNIT=1, FMT=2) X, y

READ (1, 2, ERR=8, END=9) x, y

READ (UNIT=1, FMT=2, ERR=8, END=9) X, y

Formatted file

End of file go to
Error go to

READ (*, 2) X, ¥

Formatted, std out

READ (*, 10) m_array

Unformatted array

READ (%, 10) (m()), i), K)

Implied do

READ (%, 10) S(iK)

Substring

READ (L, 9 X, y

Unformatted file

(continued)

©2001 J.E. Akin 43

Fortran Statement Examples (continued)

Name Examples Comments
READ (*,*) X,y Unformatted, std out
READ (1, (A6, 13)) X,y Character, integer
READ (1, FMT="(A6, I13)") X,y Included format
READ (1, s_fmt) x, y Format in a string
READ (1, FMT=s_fmt) x, y
READ (*, NML=data) ! Obsolete Namelist read
READ (1, NML=data) ! Obsolete Namelist from a file
READ (1, END=8, ERR=9) X, y Unformatted
READ (s2, 1, ERR=9) x Internal, formatted
READ (s2, *, ERR=9) x Unformatted
READ (s2, REC=4, END=8) x Internal, direct
READ (1, REC=3) v Unformatted direct
READ (1, 2, REC=3) v Formatted direct
READ *, input_list Default unformatted
READ *, (io _implied_do) Implied do
READ *, (a(j,:), j=1, rows)

READ ’'(formats)’, input_list Formatted read
READ ’'(formats)’, (io_implied_do) Formatted read
READ’ (515, (515)) , (num(k), k=1, n)
READ (8, FMT=20), input_list Formatted
READ (8, FMT=20, ADVANCE='NQ"), input Advance
READ (9, FMT=20, ia_spec._list), input_list I/0 Specification
READ (UNIT=7, 20, io_spec_list), input_list
READ (UNIT=8, FMT=10, ia_spec._list), input
READ (7, s_fmt, io_spec_list), input_list Stored format
READ (UNIT=7, s_fmt, io_spec_list), input
READ (9, '(formats)’, io_spec._list), input_list Inline format
READ (UNIT=9, '(formats)’, io_ spec._list), input
READ (8), input_list Binary read
READ (UNIT=7), input_list
READ (8, io_spec_list), input_list I/O Specification
READ (UNIT=9, io_spec._list), input_list
READ (s_variable, FMT=20), input list Internal file,
READ (UNIT=s_variable, 10, ia_spec_list), input type change
Real REAL*4 :: recommended
REAL :: r, m(9)
REAL*16 a, b, c Quad Precision
REAL*8, DIMENSION(n) :: a, b, c Double Precision
REAL :: a=3.14,b, c=100.0 Initialize a & ¢
REAL :: variable_list
REAL, attr_list :: variable_list
REAL, POINTER :: a(:,:)
REAL (KIND=i2 _kind), attr_list :: variable_list Kind
REAL (double), attr_list :: variable_list
Recursive RECURSIVE FUNCTION name Function
RECURSIVE FUNCTION a(n) RESULT (fac) Result
INTEGER RECURSIVE FUNCTION name (args)
RECURSIVE SUBROUTINE name (args) Subroutine
RECURSIVE SUBROUTINE name
Return RETURN Standard return

(continued)

©?2001 J.E. Akin 44

Fortran Statement Examples (continued)

Name | Examples Comments
Rewind REWIND i_exp Compute unit
REWIND 2 Unit number
REWIND k
REWIND (UNIT=8, IOSTAT=k, ERR=9) Error go to
REWIND (UNIT=8, ERR=95)
REWIND (8, IOSTAT=io_ok, ERR=99) I/O status
Save SAVE a, /Iname/, ¢ Scalars, common
SAVE Everything
SAVE :: variable_list
Select Case | SELECT CASE (value)
name: SELECT CASE (value) Named
u_or_| SELECT CASE (letter) Block
CASE ("a':"z") !lower case
lower = .TRUE.
CASE ("A":"Z") !upper case
lower = .FALSE.
CASE DEFAULT ! not a letter
PRINT *, " Symbol is not a lettér, letter
lower = .FALSE.
END SELECT u_or_|
Sequence SEQUENCE Forced storage
Stop STOP
STOP" invalid dat& With message
Subroutine SUBROUTINE subl (a, b)
SUBROUTINE subl No arguments
SUBROUTINE name (args, optionaérgs) Optional arguments
SUBROUTINE sub3 (a, b, *9) ! Obsolete, use CASE Returnto 9
RECURSIVE SUBROUTINE sub? (a, b) Recursive
Target TARGET :: name, name2 See Pointer
TARGET :: name(4,5), name2(3)
Type TYPE (person) carpool(5) User defined type
Declaration | TYPE (color), DIMENSION(256) :: hues
TYPE (type_name), attr list :: variable_list
TYPE (person), DIMENSION (n) :: addres®ook
TYPE (type_name) :: variable list
TYPE (student record) Definition block
CHARACTER (name.len) :: last, first
INTEGER : rank
END TYPE student record
Type TYPE, PRIVATE name Access
Statement TYPE, PUBLIC :: name
Use USE module_ name
USE module_name, ONLY: list_in _module_name Only
USE module name, var subr_fun_name = old_name Rename
Where WHERE (logical array_mask) Then
WHERE (a_array> 0.0) Where block

sqrt_a = SQRT(a array)
END WHERE

WHERE (mask> 0.0)
a_array = mask

Elsewhere block

(continued)

2001 J.E. Akin 45
©

Fortran Statement Examples (continued)

Name Examples Comments

ELSEWHERE
a_array =0.0
END WHERE
WHERE (a_array>0) b_array =SQRTa_ array) Statement
Write WRITE (*, 10) s(j:k) Substring

WRITE (1, *) X,y Unformatted file
WRITE (*, *) X,y Unformatted

WRITE (1, (A6, 13)) X, y
WRITE (1, FMT='(A6, 13)") X, y

Character, integer
Included format

WRITE (1, S_imi) x, y
WRITE (1, FMT=s_fmt) X, y

Stored format string

WRITE (*, NML=data) ! Obsolete
WRITE (1, NML=data) ! Obsolete

Namelist to stdout
Namelist to a file

WRITE (1, END=8, ERR=9) X, y

Unformatted

WRITE (1, REC=3) v

Unformatted direct

WRITE (1, 2, REC=3) v

Formatted direct

WRITE (s2, 1, ERR=9) x

Internal, format

WRITE (s2, *, ERR=9) x Unformatted
WRITE (s2, REC=4, END=8) x Internal, direct
WRITE *, output_list Unformatted
WRITE *, (io_implied_do) Implied do

WRITE *, ((a(i, j), j=1, cols), i=1, rows)

WRITE ’'(formats)’, output_list
WRITE '(formats)’, (io—implied_do)

Formatted write
Implied do

WRITE (7, 10, ADVANCE='NO’), output_list
WRITE (8, 10, io_spec._list), output_list
WRITE (9, FMT=20, ia_spec_list), output_list
WRITE (UNIT=7, 10, io_spec._list), output_list

Advance
I/0 specification

WRITE (9, s_fmt, io_spec_list), output_list
WRITE (UNIT=8, s_fmt, io_spec_list), output

Stored format

WRITE (9, '(formats)’, io_spec_list), output_list Inline format
WRITE (UNIT=7, '(formats)’, io_spec_list), output

WRITE (8), output_list Binary write
WRITE (7), (io—implied_do) Implied do
WRITE (8, ADVANCE="NQO"), output_list Advance

WRITE (9, io_spec._list), output_list
WRITE (UNIT=9, io_spec._list), output_list

I/0 specification

WRITE (s_variable, FMT=20), outputlist
WRITE (UNIT=s_variable, FMT=20), outputlist
WRITE (s_variable, 20, ia_spec._list), output_list
WRITE (UNIT=s_var, FMT=20, ia_spec), output

Internal file

I/O specification

©2001 J.E. Akin 46

Appendix C

Selected Exercise Solutions

C.1 Problem 1.8.1 : checking trigonometric identities

The Fortran 90 program and output follow. The error levels are due to the fact that F90 defaults to
single precision reals. F90 is easily extended to double precision, and in theory supports any level of user
specified precision. For simplicity the F77 default naming convention for integers and reals is used. That
is not a good practice since safety dictates declaring the type of each variable at the beginning of each
program. (Try changing the reals to double precision to verify that the error is indeed reduced.)

1] implicit none
2] integer :: k,n = 16
3] real, parameter :: pi = 3.141592654 ! set constant
4 print *’ Theta sin"2+cos™2 error’
4 do k =0, n ! Loop over (n+l) points
5 theta = k*pi/n
6 sint = sin(theta)
7 cost = cos(theta)
8 test = sint*sint + cost*cost
9 write (*, '(3(1pel4.5))) theta, test, 1.-test
10 end do ! over k
Theta sin"2+cos™2 error

0.00000E+00 1.00000E+00 0.00000E+00
1.96350E-01 1.00000E+00 5.96046E-08

3.92699E-01 1.00000E+00 0.00000E+00
5.89049E-01 1.00000E+00 0.00000E+00
7.85398E-01 1.00000E+00 5.96046E-08

9.81748E-01 1.00000E+00 0.00000E+00
1.17810E+00 1.00000E+00 5.96046E-08
1.37445E+00 1.00000E+00 0.00000E+00
1.57080E+00 1.00000E+00 0.00000E+00
1.76715E+00 1.00000E+00 5.96046E-08
1.96350E+00 1.00000E+00 0.00000E+00
2.15985E+00 1.00000E+00 0.00000E+00
2.35619E+00 1.00000E+00 5.96046E-08
2.55254E+00 1.00000E+00 0.00000E+00
2.74889E+00 1.00000E+00 0.00000E+00
2.94524E+00 1.00000E+00 0.00000E+00
3.14159E+00 1.00000E+00 0.00000E+00

C.2 Problem1.8.2: Newton-Raphson algorithm

The most convenient form of loop is the post-test loop, which allows each iteration to be calculated and

the error checked at the end.
xnew = X
do {
X = Xnew
xnew = x - f(x)/fprime(x)

while (abs(xnew-x) < tolerance)

The alternate logic constructs employ tests at the end of the loop and transfer out the end of the
loop when necessary. MLAB and C++ transfer using the “break” command while F90 uses the “exit”
command.

©?2001 J.E. Akin 47

A F90 program with an infinite loop, nhameestnewton.fo0 , and its result is given below. Be
warned that this version uses the IMPLICIT name styles for integers and reals instead of the better strong
typing that results from the recommended use of IMPLICIT NONE.

function f(x) result(y)
real, intent (in) :

3 real) ty
4 = exp(2*x) - 5* - 1
5 end Xjnction ?

6

7

8

N =

functron fprime(x) result(y)
real intent (in) :
9 rea
?/ 2*exp(2*x) - 5
11 end unction fprrme

13 program main
14] implicit none
15] real, parameter :: tolerance = 1l.e-6 ! set constant

16] real :: x, xnew = 3. ! Initial value

17] integer :: iteration

18 iteration = 0

19] ! Iteration count

20 do ! forever until true

21 iteration = iteration + 1

22 X = Xnew

23 xnew = x - f(x)/fprime(x)

24 if (abs(xnew - x) < tolerance) exit ! converged is true
25 end do ! forever

26 print *, 'Solution: ', xnew, ’, lterations:’, iteration

27] end program main

>>f90 -0 newton testnewton.f90
>>newton]
Solution: 0.8093941 , Iterations: 10

C.3 Problem 1.8.3 : came of life

1] program game _of _life ! procedural version

2] implicit none

3 integer, parameter :: boardsize = 10

4 integer :: board Eboardsize, boardsizeg =0
5 integer :: newboard (boardsize, boardsize
6 character(len=1) ok | page prompt

7 integer ok, number ! loops

8

9 ! Initial life data, the "Glider"

10 board (3, 3) = 1; board (4, 4) = 1; board (5, 4) =
11 board (5, 3) = 1; board (5, 2) = 1

12

13 print *, "Initial Life Display:"

14 call spy (board) ! show initial lifeforms

15 print *; “Initially alive = ", sum (board); print *, " "
16

17 print *, "Enter number of generations to display:"

18 read *, number

19 do k = 1, number

20 newboard = next _generation (board)

21 board = newboard ! save current lifeforms

22 call spy (board) ! show current lifeforms

23 print *; print *, "Generation number = ", k

24 print *, "Currently alive = ", sum (newboard)

25

26 print *, 'continue? (y, n)’

27 read *, ok ! read any character to continue

28 if (ok =='n") exit ! this do loop only

29 end do ! on k for number of generations

30

31] contains ! internal (vs external) subprograms

32

33 function next _generation (board) result (newboard)
34] | Compute the next generation of life

35 integer, intent(in) :: board G,))
36 integer = newboard (size(board, 1), size(board, 2))
37 integer i, j, neighbors ! loops

38

39 newboard = | initialize next generation

40 do i = 2, boardsrze -1

41 do j = 2, boardsize - 1

42 neighbors = sum (board (i - i + 1, -1 +1) %
43 - board (i, j

44 if (board (i, j) == 1) then ! life in the cell

©2001 J.E. Akin 48

45 if ((neighbors > 3 .or. nelghbors < 2)) then
46 newboard (i, j) = 0 I it die
47 else

48 newboard (i, j) = 1 I newborn
49 end if ! on number of neighbors

50 else ! no life in the cell

51 if (neighbors == 3) then

52 newboard (i, j) = 1 ! newborn
53 else

54 newboard (i, j) = 0 ! died

55 end if ! on number of neighbors

56 end if ! life status

57 end do ! on column j

58 end do ! on row i

59 end function next _generation

61 Subroutine spy (board) I model matlab spy function

62] ! Show an X at each non-zero entry of board, else show -

63 integer, intent(in) : board Y

64 character (len=1) Ilne (S|ze(b0ard 1)) I a line on screen
65 integer i ! loops

67 line ="’ I blank out the line
68 do i = 1, size (board 1) ! loop over each row
69 line (1 size (board 2) =" I current board width

70 where (board) /= 0) line = "X’ ! mark non-zero columns
71 write (%, (80a1) "line I print current row

72 end do ! over all rows

73 end subroutine spy

74] end program ! game _of _life

76] ! Running gives:
77] ! Initial Life Display:
!

88] ! Initially alive = 5
|

90] ! Enter number of generations to display: 4

!

102] ! Generation number = 1
I Currently alive = 5
! continue? (y, n) n

C.4 Problem 2.5.1 : conversion factors

This code illustrates the type of global units conversion factors that you can define for your field of study.

They can be accessed by any program that includes aConversion _ Constants
parameter name, as shown on line 16.

1] Module Conversion _Constants ! DefineUnits Conversion

2] ! Define selected precision

3 INTEGER, PARAMETER :: DP = KIND (1.d0) ! Alternate form

4 | ========== Metric Conversions ==========

5 reaIEDPg, parameter:: cm _Per _Inch

6] real(DP), parameter:: kg _Per _Pound = 045359237 _DP
7] real(DP), parameter:: kg _Per _Short _Ton = 907.18474 _DP
8] real(DP), parameter:: kg _Per _Long _Ton = 1016.0469088 _DP
9] real(DP), parameter:: m _Per _Foot = 3.048 _DP

10] real(DP), parameter:: m _Per _Mile = 1609.344 _DP
11] real(DP), parameter:: m _Per _Naut _Mile = 1852.0 _DP

12] real(DP), parameter:: m _Per _Yard = 0.9144 _DP

13] end Module Conversion _Constants

14] Program Test

©2001 J.E. Akin 49

line and cites a

15 use Conversion _ Constants
16 print *, ‘'cm _Per _Inch = ', cm _Per _Inch ; End Program Test
17] ! Running gives: cm _Per _Inch = 2.54000000000000004

This code illustrates the type of common physical constants that can be made available as global
variables that you can define for your field of study. They can be accessed by any program that includes
ause Physical _Constants line and cites a parameter name, as shown on line 60 below.

1] Module Physical _ Constants | Define Physical Constants
2] ! Define selected precision
3 INTEGER, PARAMETER :: DP = KIND (1.d0) ! Alternate form
4
5] | ========== Physics Constants and units ==========
6 realgDPg, parameter:: AMU _Value = 1.6605402E-27 _DP ! kg
7] real(DP), parameter:: Atmosphere _Pres = 9.80665E+04 _DP ! Pa
8] real(DP), parameter:: Avogadro = 60221367E+23 _DP I 1/mol
9] real(DP), parameter:: Bohr _Ma neton = 9.2740154E-24 _DP 1 JIT
10] real(DP), parameter:: Bohr _Radius = 5.29177249E-11 _DP ' m
11] real(DP), parameter:: Boltzmann = 1.380657E-23 _DP I JIK
12] real(DP), parameter:: c _Light = 2.997924580E+8 _DP ! m/s
13] real(DP), parameter:: Electron _Compton = 2.42631058E-12 _DP ! m
14] real(DP), parameter:: Electron _Angular = 5.2729E-35 _DP I J*s
15] real(DP), parameter:: Electron _Charge =-1.60217738E-19 _DP ! coul
16] real(DP), parameter:: Electron _Mass_Rest = 9.1093897E-31 _DP I kg
17] real(DP), parameter:: Electron —Moment = 9.2847700E-24 _DP 1T
18] real(DP), parameter:: Electron _Radius = 2.81794092E-15 _DP ! m
19] real(DP), parameter:: Faraday = 9.6485309E+04 _DP I C/mo
20] real(DP), parameter:: G _Universal = 6 67260E-11 _DP ! m "3/(s"2*kg)
21] real(DP), parameter:: Light _Year = 9.46073E+15 _DP !
22] real(DP), parameter:: Mech _equiv _Heat = 4.185E+3 _DP ! J/kcal
23] real(DP), parameter:: Molar _Volume = 0.02241410 _DP I m"3/mol
24] real(DP), parameter:: Neutron SS = 1.6749286E-27 _DP ! kg
25] real(DP), parameter:: Permeability = 1.25663706143E-06 _DP ! H/m
26] real(DP), parameter:: Permittivity = 8.85418781762E-12 _DP ! F/m
27] real(DP), parameter:: Planck _Const = 6.6260754E-34 _DP 1 J*s
28] real(DP), parameter:: Proton _Mass = 1.6726230E-27 _DP ! k?
29] real(DP), parameter:: Proton _Moment = 1.41060761E-26 _DP ! J/IT
30] real(DP), parameter:: Quantum _charge _r = 4.13556E+12 _DP I J*s/C
31] real(DP), parameter:: Rydberg _inf = 1.0973731534E+07 _DP! 1/m
32] real(DP), parameter:: Rydberg _Hydrogen = 1.09678E+07 _DP I 1/m
33] real(DP), parameter:: Std _Atmosphere = 1.01325E+05 _DP ! Pa
34] real(DP), parameter:: Stefan _Boltzmann = 5.67050E-08 _DP I W/(m"2*K"4)
35] real(DP), parameter:: Thomson _cross _sect = 6.6516E-29 _DP ' m2
3(75 real(DP), parameter:: Universal _Gas_C = 8.314510 _DP I J/mol*K
38] | ========== Astronomy Constants and units ==========
39] real(DP), parameter:: AU _Earth _Sun = 1.4959787E+11 _DP ! m
40] real(DP), parameter:: Anomal _Month = 27.5546 _DP ! days
41] real(DP), parameter:: Anomal _Year = 365.2596 _DP ! days
42] real(DP), parameter:: Dracon _Month = 27.2122 _DP | days
43] real(DP), parameter:: Earth _G = 9.80665 _DP I ' m/s"2
44] real(DP), parameter:: Earth _Mass = 5.974E+24 _DP ! kg
45] real(DP), parameter:: Earth _Radius _Eq = 6.37814E+6 _DP I'm
46] real(DP), parameter:: Earth _Radius _Mean = 6.371E+6 _DP I'm
47] real(DP), parameter:: Earth _Radius _Polar = 6.356755E+6 _DP I'm
48] real(DP), parameter:: Julian _Year = 365.25 _DP ! days
49] real(DP), parameter:: Rotation _Day = 23.93447222 _DP ! hours
50] real(DP), parameter:: Sidereal _Day = 23.93446944 _DP ! hours
51] real(DP), parameter:: Sidereal _Month = 27.3217 _DP ! days
52] real(DP), parameter:: Sidereal _Ratio = 1.0027379092558 _DP
53] real(DP), parameter:: Sidereal _Year = 365.2564 _DP ! days
54] real(DP), parameter:: Solar _Day = 24.06571111 _DP I hours
55] real(DP), parameter:: Synodic _Month = 29.5306 _DP I days
56] real(DP), parameter:: Tropical _Year = 365.2422 _DP ! days
57] end Module Physical _ Constants ! Define Physical Constants
58] Program Test
59 use Physical _Constants
60 print *, "Avogadro = ', Avogadro ; End Program Test
61] ! Running gives: Avogadro = 0.602213669999999967E+24

C.5 Problem 3.5.3 : creating a vector class

We begin by defining the components to be included in our vector object. They include the length of each
vector and a corresponding real array of pointers to the vector components:

[1] module class _Vector ! filename: class _Vector.f90
2] ! public, everything by default, but can specify any
3 implicit none
4 type Vector
5 private
©2001 J.E. Akin 50

real, pointer, dimension(:) :: data ! component values

[6] integer i size ! vector length
end type Vector

For persons familiar with vectors the use of overloaded operators makes sense (but it often does not
make sense). Thus we overload the addition, subtraction, multiplication, assignment, and logical equal
to operators by defining the correct class members to be used for different argument types:

9 ! Overload common operators

10] interface operator (+) ! add others later

11 module procedure add _Vector, add _Real _to _Vector; end interface
12] interface operator (-) ! add unary versions later

13 module procedure subtract _Vector, subtract _Real; end interface
14] interface operator (*) ! overload *

15 module procedure dot _Vector, real _mult _Vector, Vector _mult _real
16] end interface

17] interface assignment (=) ! overload =

18 module procedure equal _Real; end interface

19] interface operator (==) | overload ==

20 module procedure is _equal _to; end interface

21

Then we encapsulate the supporting member functions, beginning with two constructors, assign and
make_Vector:

22] contains ! functions & operators

23

24] function assign (values) result (name) ! array to vector constructor

25 real, intent(in) :: values(:) | given rank 1 array

26 integer :: length | array size

27 type (Vector) :1 name ! Vector to create

28 length = S|ze(values) allocate (name%data(length))

%g name % size = length; name % data = values; end function assign
31] function make _Vector (len, values) result(v) ! Optional Constructor
32 integer, optional, intent(in) :: len I number of values

33 real, optional, intent(in) :: values(:) ! given values

34 type (Vector) LV

35 if (present ﬁlen)) then | create vector data

36 v%size = len ; allocate (v%data(len))

37 if (present (values)) then ; v%data = values ! vector

38 else ; V%data = 0.dO ! null vector
39 end if ! values present

40 else I scalar constant
41 v%size = 1 ; allocate ? v%data(1l)) ! default
42 if (present (values)) then ; v%data(l) = va ues(l) I scalar

43 else ; V%data(1l) = 0.dO I null
44 end if ! value present

45 end if ! len present

46] end function make _Vector

47

The remainder of the members are given in alphabetical order:

48 function add _Real _to _Vector (v, r) result (new) ! overload +

49 type (Vector), intent(in) :: v

50 real, intent(in) ::

51 ty?e (Vector) ': new l'new = v +r

52 (voosize < 1) stop "No sizes in add _Real _to _Vector"
53 allocate (new% ata(v%5|ze)) ; new%size = v%size

54 I new%data = v%data + r | as array operation

55 new%data(l:v%size) = v%data(1l:v%size) + r ; end function

56

57] function add _Vector (a, b) result (new) ! vector + vector

58 type (Vector), intent(in) :: b

59 ty?e Vector l'new = a+b

60 if (a%size /= b%size) stop "Slzes differ in add _Vector"
61 allocate (new%data(a%size)) ; new%size = a%size

62 new%data = a%data + b%data ; end function add _Vector

Note that lines 55 and 62 above are similar ways to avoid writing serial loops that would have to be used
in most languages. This keeps the code cleaner and shorter, and more importantly it lets the compiler
carry out those operations in parallel on some machines.

While copy members are very important to C++ programmers the followdpyg _ Vector should
probably be omitted since you would not usually pass big arrays as copies and F90 defaults to passing by
reference unless forced to pass by value.

63
[64] function copy __Vector (name) result (new)
65 type (Vector), intent(in) :: name

©2001 J.E. Akin 51

g
[68]

type (Vector)
allocate (new%data(name%5|ze)) new%size = name%size
new%data = name%data ; end function copy _ Vector

The routinedelete _Vector is the destructor for this class. In some sense it is incomplete because it
does not delete thsize attribute. It was decided that while the actual array of data may take a huge
amount of storage, the single integer was not important. To be more complete one would have to have to
makesize an integer pointer and allocate and deallocate it at numerous locations within this module.

subroutine delete _Vector (name) ! deallocate allocated items
type (Vector), intent(inout) :: name
integer o ok ! check deallocate status
deallocate (name%data, stat = ok)
if (ok /= 0) stop "Vector not allocated in delete _Vector"
name%size = 0 ; end subroutine delete _Vector
function dot _Vector (a, b) result (c) ! overload *
type (Vector), intent(in) :: a, b
real ic
if (a%size /= b%size) stop "Sizes differ in dot _Vector"
= dot _product(a%data, b%data); end function dot _Vector
subroutine equal _Real (new, R) ! overload =, real to vector
type (Vector), mtent(mout) ;o new
real, intent(in) © R

if (associated (new%data)) deallocate (new%data)
allocate (new%data(l)); new%size = 1

new%data = R ; end subroutine equal _Real
logical function is qual _to (a, b) result (t _f) ! overload ==
type (Vector) intent(in) b I left & right of ==
t _f = .false ! Initialize
if (a%size /- b%size) return | same size ?
t _f = all (a%data == b%data) I and all values match
end function is _equal _to
function length (name) result (n) ! accessor member
type (Vector), intent(in) :: name
integer

n = name % size ; end functlon length

subroutine list (name) ! accessor member, for prettier printing
type (Vector), intent(in) :: name
print *"[", name % data(1:name%size), "]"; end subroutine list

function normalize _Vector (name) result (new)
type EVectorg, intent(in) :: name
type Vector onew
real o total, nil = epsilon(1.0) ! tolerance
allocate (new%data(name%size)) ; new%size = name%size
total = sqrt (sum (name%data**2)) ! intrinsic functions
if (total < nil) then ; new%data = 0.dO ! avoid division by 0
else ; new%data = name%data/total
end if ; end function normalize _Vector
subroutine read _Vector (name) ! read array, assign
type (Vector), intent(inout) :: name
integer, parameter ©omax = = 999
integer length
read (*/'(i1)’, advance = 'no’) length
if (length <= 0) stop "Invalid length in read _Vector"
if f length >= max) stop "Maximum length in read _Vector"
allocate (name % data?length)) ; name % size = length
read *, name % data(l:length) ; end subroutine read _Vector
function real _mult _Vector (r, v) result (new) ! overload *
real, intent(in) = r
type (Vector), intent(in) :: v
type (Vector onew l'new =r * v
if (vY%size < 1) stop "Zero size in real _mult _Vector"
allocate (new%data(v%size)) ; new%size = v%size
new%data = r * v%data ; end function real _mult _Vector
function size _Vector (name) result (n) I accessor member
type (Vector), intent(in) :: name
integer Ton
n = name % size ; end function size _Vector
function subtract Real(v r) result(new) ! vector-real, overload -
type (Vector), intent(in) :
real, mtent(m)
type (Vector) .: new ' new = v +r
J.E. Akin 52

143 if (v%size < 1) stop "Zero length in subtract _Real"

144 allocate (new%data(v%size)) ; new%size = v%size

%Ztg new%data = v%data - r ; end function subtract —Real
147] function subtract _Vector (a, b) result (new) ! overload -

148 type (Vector), intent(in) :: a

149 type (Vector onew

150 if (a%size /= b%size) stop "Sizes differ in subtract _Vector"
151 allocate (new%data(a%size)) ; new%size = a%size

%g% new%data = a%data - b%data ; end function subtract —Vector
154] function values (name) result (array) I accessor member

155 type (Vector), intent(in) :: name

156 real i1 array(name%size)

157 array = name % data ; end function values

The routinedelete _Vector is the manual constructor for this class. It has no optional arguments so
both arguments must be supplied, and it duplicates the constructor on line 31, but it uses the naming
convention preferred by the author.

158

159] function Vector _ (Iength values) result(name) ! constructor

160 integer, mtentSm) Ieng th | array size

161 real, target, intent(in) :: values(length) ! given array

162 real, pointer opt _to _val(:) ! pointer to array
163 type (Vector) I name ! Vector to create

164 integer 1 get _m | allocate flag
165 alocate (pt _to _val (length), stat = get _m | allocate
166 f (get _m /= 0) stop 'allocate error’ ! chec

167 pt “to _val = values ! dereference values
168 name = Vector(length, pt _to _val) ! intrinsic constructor
169] end function Vector —

170

171] function Vector _max_value (a) result (v) ! accessor member
172 type (Vector), intent(in) :

173 real

174 v = maxval (a%data(1: a%5|ze)) end function Vector _max_value
175

176] function Vector _min _value (a) result (v) | accessor member
177 type (Vector), intent(in) :

178 real

179 v = minval (a%data(1: a%5|ze)) end function Vector _min _value
180

181] function Vector _mult _real(v, r) result(new) ! vec*real, overload *
182 type (Vector), intent(in) :: v

183 real, intent(in) = r

184 type (Vector) onew 'new = v *r

185 if (v%size < 1) stop "Zero size in Vector _mult _real"
186 new = Real _mult _Vector(r, v); end function Vector _mult _real
187

188] end module class —Vector

A first test of this class is given below along with comments that give the verifications of the members.

1] ! Testing Vector Class Constructors & Operators

2] include ’class _ Vector.fo0’ ! see previous figure
3] program check _vector _class

4 use class _Vector

5 implicit none
6

7

8

9

type (Vector) :: X, y, z

! test optional constructors: assign, and cop

10 x = make _Vector () ! single scalar zero

11 write (*,("made scalar x = ")',advance="no’); call list(x)

12

13 call delete _Vector (x; ; Yy = make _Vector (4) ! 4 zeros
14 write (*,'("made null y = "),advance='no’); call list(y)

16 z = make _Vector (4 (/11 12., 13., 14./)) ! 4 non-zeros
17 write E*,‘?'made full z = "), advance= no) call list(z)

18 write (*,’("assign [31., 32 33., 34.] to x))

19

20 x = assign((/31., 32., 33, 34.)) ! (4) non-zeros

%% write (*,’ "a53|gned X = ") advance='no’); call list(x)

23 x = Vector _(4, (/31., 32, 33, 34.))) | 4 non-zeros

24 write (*,'("public X = ")’ advance= 'no’); call list(x)

25 write (*,'("copy x to y) advance="no’)

26 y = copy _\Vector (x) call list(y) ! copy
27

28] ! test overloaded operators

29 write E*,’g"z * x gives "Y,advance='no’); print *, z*x ! dot
30 write (*,'("z + x gives ")’,advance='no’); call list(z+x) ! add

©?2001 J.E. Akin 53

31 y = 25.6 ! real to vector
32 write (* '("y = 25.6 gives ")',advance='no’); call list(y)

33 y = ! equality

34 wnte *'("y = z gives y as "), advance no) call list(y)

35 write *‘ "logic y == x gives ")’,advance='no"); print *, y==x

36 write *,‘ "logic y == z gives " advance 'no’); print * y==z

37

38] ! test destructor, accessors

39 call delete _Vector (y) ! destructor
40 write (*,'("deleting y gives y = "),advance="no’); call list(y)

41 print *, "size of x is ", Iength x) ! accessor

42 print *, "data in x are [*, values () " | accessor

43 write (*,'("2. times x is "),advance="no’); call list(2.0*x

44 write (*("x times 2. is ").advance="no"): call list(x*2.0

45 call delete _Vector (x); call delete” _Vector (z) ! clean up
46] end program check _vector _class

47] ! Running glves the output: I made scalar X = [0]

48] ! made null'y = [0, 0, O, O] ! made full z = [11, 12, 13, 14]
49] ! assign [31 32, 33 34] to x ! assigned x [[31, 32, 33, 34]]

50] ! public x = [31 , 33, 34] ! copy x to y = [31, 32, 33, 34

51] ! z * x gives 'z + x gives [42, 44, 46, 48]
52] !y = 256 glves [256000004] ly = z, y = [11, 12, 13, 14]
53] ! logic y == x gives F | logic y == z gives T

54] ! deleting y gives y =] ! size of x is 4

55] ! data in x : [31, 32, 33, 34] ! 2 times x is [62, 64, 66, 68]

56] ! x times 2 is [62, 64, 66, 68]

Having tested the vector class we will now use it in some typical vector operations. We want a program
that will work with arrays of vectors to read in the number of vectors. The array of vectors will use an
automatic storage mode. That could be risky because if the system runs out of memory we get a fatal
error message and the run aborts. If we made the alternate choice of allocatable arrays then we could
check the allocation status and have a chance (but not a good chance) of closing down the code is some
"friendly” manner. Once the code reads the number of vectors then for each one it reads the number of
components and the the component values. After testing some simple vector math we compute a more
complicated result know as the orthonormal basis for the given set of vectors:

1] ! Test Vector Class Constructors, Operators and Basis

2] include ’class _Vector.f’

3

4] program check _basis ! demonstrate a typical Vector class
5 use class _Vector

6 implicit none

7

8 interface

9 subroutine testing _basis (N _V)

10 integer, intent(in) : _

11 end subroutine testmg _basis

12 end interface

13

14 print *, "Test automatlc allocate, deallocate"

15 print * " " read

16 print * “The number of vectors to be read is: "N _V
17 call testlng _basis (N _V) ! to use automatic arrays
18] end program check _basis

19

20] subroutine testing _basis (N _V)

21] ! test vectors AND demo automatic allocation/deallocation

%g use class _Vector

24 integer, intent(in) :: N _V

25 type (Vector o Input(N _V) ! automatic array
26 type (Vector o Ortho(N _V) ! automatic array
27 integer D

28 real I norm

29

30] interface

31 subroutine orthonormal _basis (Input, Ortho, N _given)
32 use class _Vector

33 type §Vectorg, intentéin) Input(N _giveng
34 type (Vector), intent(out) :: Ortho(N _given

35 integer, intent(in) N _given

36 end subroutine orthonormal - _basis

37] end interface

38

39 print *, " " ; print *, "The given ", N _V, " vectors:"
40 doj=1, N _

41 call read _Vector (Input(j))

42 call list (Input(j))

43 end do ! for j

44

45 print *, " "

©?2001 J.E. Akin 54

46
47
48
49
50
51
52
53
54
55
56

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

print *, "The Orthogonal Basis of the original set is:"

call orthonormal _basis (Input, Ortho, N _V)

doj=1, N _V I list new orthogonal basis
call list (Ortho(j))

end do ! for j

! use vector class features & operators
print *, '’ ; print *"vector 1 + vector 2 = "
call list (Input(1)+Input(2))
print *"vector 1 - vector 2 ="
call list (Input(1)-Input(2))
print *"vector 1 dot vector 2 = ", Input(1)*Input(2)
print *"vector 1 * 35 ="
call list (3.5*Input(1))

norm = sqrt (dot _Vector(Input(1), Input(1)))
print *"norm(vector 1) = ", norm
print *"normalized vector 1 ="
call list (normalize _Vector(Input(1)))
print *"max(vector 1) = ", vector _max_value (Input(1))
print *"min(vector 1) = ", vector _min _value (Input(1))
print *"length of vector 1 = ", length (Input(1))
end subroutine testing _basis
subroutine orthonormal _basis (Input, Ortho, N _given)

! Find Orthonormal Basis of a Set of Vector Classes
use class _Vector

I = -, +, * are overloaded operators from class _Vector

type (Vector), intent(in) :: Input(N _given)
type (Vector), intent(out) :: Ortho(N _given)
integer, intent(in) © N _given
integer i, j ! loops
real :: dot
doi =1, N _given ! original set of vectors

Ortho(i) = Input(i) | copy input vector class

doj=1,i ! for previous copies

dot = dot _Vector(Ortho(i), Ortho(j))

Ortho(i) = Ortho(i) - (dot*Ortho(j))
end do ! for j

Ortho(i) = normalize _Vector (Ortho(i))
end do ! over i
end subroutine orthonormal __basis

Compiling and inputting :
4

3062500
37531250
3 13.25 -7.8125 6.5
3 14.0 35 -75
Gives:
Test automatic allocate, deallocate

The number of vectors to be read is: 4
The given 4 vectors:

0.6250 0.0000 0.0000]

7.5000 3.1250 0.0000]

13.2500 -7.8125 6.5000]

14.0000 3.5000 -7.5000]

The Orthogonal Basis of the original set is:
1.0000 0.0000 0.0000]
0.0000 -1.0000 0.0000]
0.0000 0.0000 -1.0000]
0.0000 0.0000 0.0000]

vector 1 + vector 2 = [81250 3.1250 0.0000]
vector 1 - vector 2 = [-6.8750 -3.1250 0.0000]

vector 1 dot vector 2 4.6875
vector 1 * 3.5 = [2.1875 0.0000 0.0000]
norm(vector 1) = 0.6250

normalized vector 1 = [1.0000 0.0000 0.0000]
max(vector 1) 0.6250

min(vector 1) 0.0000

length of vector 1 = 3

©2001 J.E. Akin 55

C.6 Problem 3.5.4 : creating a sparse vector class

This class begins like the previous Vector class except that we must add a row entry (line 4) for each data
value entry (line 5). This is done for efficiency since we expect most values in sparse vectors to be zero
(and hence their name). The attributen _zero is the size of bothows andvalues

1] module class _sparse _\Vector

2 implicit none

3 type sv I a sparse vector
4 integer T non _zeros
5 integer, pointer :: rows(:)

6 real, pointer :: values(:)

7 end type

8

The overloading process is similar, but now we will see that much more logic is required to deal with the
zero entries and new zeros created by addition or multiplication.

8 interface assignment (=)

9 module procedure equal _Vector ; end interface

10 interface operator (.dot.) ! define dot product operator

11 module procedure dot _Vector ; end interface

12 interface operator (==) ! Boolean equal to

13 module procedure is _equal _to ; end interface

14 interface operator (*) ! term by term product

15 module procedure el _by _el _Mult, real _mult _Sparse
16 module procedure Sparse _mult _real

17 end interface

18 interface operator (-) | for sparse vectors

19 module procedure Sub _Sparse _Vectors ; end interface
20 interface operator (+) I for sparse vectors

21 module procedure Sum _Sparse _Vectors ; end interface
22

23] contains ! operators and functionality

In the following constructor for the class note that both the pointer array attributes are allocated (line 32)
the same amount of storage in memory. One should also include the allocation status flag here and checks
its value to raise a possible exception (as seen in lines 41-46).

24 subroutine make _Sparse _Vector (s,n,r,v)

25 ! allows zero length vectors

26 type (sv) DS ! name

27 integer, intent(in) :: n | size

28 integer, intent(in) :: r(n) ! rows

29 real, intent(in) :: v(n) ! values

30 if (n<0) stop &

31 "Error, negative rows in make _Sparse _Vector"
32 allocate (s%rows(n), s%values(n))

33 s%non _zeros = n ! copy size

34 s%rows =r I row array assignment
35 s%values =v ! value array assignment
36 end subroutine make _Sparse _\Vector

37

This is really a destructor. Again, it is incomplete because the integer array size was not made allocatable
for simplicity.

38 subroutine delete _Sparse _\Vector (s)

39 type (sv) ' s ! 'name of sparse vector

40 integer :error | deallocate status flag, O no error

41 deallocate (s%rows, s%values, stat = error) ! memory released

42 if (error == 0) then

43 s%non _zeros = 0 ! reset size
44 else ! never created

45 stop "Sparse vector to delete does not exist"

46 end if ; end subroutine delete _Sparse _Vector

47

This creates a user defined operator ¢iit. to be applied to sparse vectors.

48 function dot _Vector (u, v) result (d) ! defines .dot.

49 ! dot product of sparse vectors

50 type gsvg, intent(in) :: u, v ! sparse vectors

51 type (sv LW ! sparse vector, temporary

52 real o d ! dot product value

53 d = 0.0 ! default
54 if (u%non _zeros < 1 .or. v%non _zeros < 1) return ! null
55 w = el _by_el _Mult (u, v) ! element by element sparse product
56 if (w%non _zeros >0) &

57 d = sum(w%values(l:w%non _zeros)) ! summed

58 call delete _Sparse _\Vector (w) | delete temp

©2001 J.E. Akin 56

[59] end function dot _Vector
60

The abovedot _Vector is more complicated in this format because it is likely that stored non-zero
values will be multiplied by (unstored) zeros. Thus, the real work is done in the following member
function that employs Boolean logic. The terms for the summation that creates the scalar dot product are
first computed in a full vector equal in length to the minimum row number given. Observe that its size
is established through the use of thi intrinsic, acting on the two given sizes, within thienension

attribute for the full array (lines 67,68). Three logical arrays (line 68) are used as “masks” which are
true when a non-zero exists in the corresponding row of their associated sparse vector (down to the
minimum row cited above). The three logical vectors are initialized in lines 77 to 92. That process ends
with the third vector being created as a Boolean product (line 91) and the maximum possible number of

non-zero products is found from tleunt intrinsic (line 92).
Itis also important to note that the working space vettibr is anautomatic array

and memory

for it is automatically allocated for it each time the function is called. It could be an extremely long
vector and thus it is possible (but not likely) that there would not be enough memory available. Then the
system would abort with an error message. To avoid that possibility one could have dégdlared be
anallocatable vector and then allocate its memory by using a similar construct. That allocation
request should (always) include the STAT flag so that if the memory allocation fails it would be possible

to issue an exception to try to avoid a fatal crash of the system (not likely).

61 function el _by _el _Mult (u, v) result (w) ! defines * operator

62 ! element by element product of sparse vectors: 0 * real ?

63 type sv intent(in) :: u, \ ! given vectors

64 type ! new vector

65 real :: fuII(min(u%rows(u%non _zeros), & ! automatic

66 & v%rows(v%non _zeros))) ! workspace

67 logical, dimension(min(u%rows(u%non _zeros), &

68 v%rows(v%non _zeros))) : u —_m, v_m, w_m ! logical product masks
69 integer :: |, k, last, n, row

70 | is either u or v null ?

71 if (u%non _zeros < 1 .or. v%non _zeros < 1) then ! w is null
72 allocate (w%rows(0), w%values(0))

73 w%non _zeros = 0

74 return ! a null sparse vector

;g end if ! no calculation necessary

77 ! Initialize logic masks

78 last = mln(u%rows(u%non _zeros), v%rows(v%non _zeros)) ! max size
79 u _m = false. I assume no contributions
80 do j = l size(u%rows)

81 row = U%I’OWS(j) | get row number to flag

82 if (row > last) exit ! j loop

83 u _m(row) = .true. | possible contribution

84 end do ! to initalize u mask

85 v _m = false. I assume no contributions
86 do j = 1, size(v%rows)

87 row = v%rows(j) ! get row number to flag

88 if (row > last) exit ! j loop

89 v _m(row) = .true. I possible contribution

90 end do ! to initalize v mask

91 w —_m = (u_m .and. v _m) ! Boolean product logic
92 =count (w _m) ! count ossible products
93 ' if (n == 0) print *"Warning: zero length sparse" ! debug

94

The vectorfull is set to zero (line 96) and comparison DO loops (lines 97,101) over the two given
vectors are minimized (lines 100,103) by testing where the mask wectois true (thereby indicating

a non-zero product). When all the products are stored irfulhe vector it is converted to the sparse
vector storage mode (line 109) for release as the return result. Beftélusés anautomatic array

its memory is automatically released when the function is exited.

95 ! Fill the product workspace, full

96 full = ! initialize

97 do j = 1 size(u%rows) ! loop over u

98 row = U%I’OWS(]; ! row in u

99 if é row > last) exit ! thls IooP inu ! past end of w

100 if (.not. w _m(row)) cycle ! to next j I not in product
101 do k = 1, size(v%rows) ! loop over v
102 if (vorows(k) > last) exit ! this loo ! past end of w

103 if (.not. w m(v%rows k))) cycle ! to k+1 ! not in product
104 if ? row == v%rows(k) | same row, u & v
105 ull(row) = u%values(J)*v%vaIues(k) | get product

©2001 J.E. Akin 57

106 end if

107 end do ! on k in v

108 end do ! on jin u

109 w = Vector _To_Sparse (full) Idelete any zeros
[110] end function el _by _el _Mult ! deletes full & 3 masks

111

The operator overloading members are given with the next function (line 112) as well as in lines 140,
231, and 320.

112 subroutine equal _Vector (new, s) ! overload =

113 type Esvg mtentEmout) Ionew

114 type (sv), intent(in) S

115 allocate (new%rows(s%non _zeros))

116 allocate (new%values(s%non _zeros))

117 new%non _zeros = s%non _zeros

118 if (s%non _zeros > 0) then

119 new%rows (l:s%non _zeros) = s%rows (1:s%non _zeros) ! array copy
120 new%values(1:s%non _zeros) = s%values(1:s%non _zeros) ! copy
g% end if ; end subroutine equal _Vector

123 function get _element (name, row) result (v)

124 type (sv), intent(in) :: name | sparse vector

125 integer, intent(in) :: row ! row in sparse vector

126 integer | ! loops

127 real TV ! value at row

128 v = 0.0 ! default
129 if (row < 1) stop "Invalid row number, get _element"
130 if (name%non _zeros < 1) return ! not here
131 if (row > name%rows(name%non _zeros)) return ! not here
132 H 1, name%non _zeros

133 if (row == name%rows(j)) then

134 vV = name%values(j) ! found the value
135 return | search done
136 end if ! in the vector

137 end do ! over possible values

138 end function get _element

139

140 function is _equal _to (a, b) result (t _or _f) ! define ==
141 type ﬁsv), intent(in) :: a, I two sparse vectors

142 logica :: t _or _

143 integer s ! Ioops

144 t _or _f = .true. I default

145 if (a%non _zeros == b%non _zeros) then ! also check values
146 do i = 1, a%non _zeros ! or use count function for simplicity
147 if (a%rows(l) /= b%rows(i) .

148 a%values?) /= b%values)) then

149 t or = false. ecause rows and/or values differ
150 return ! no additional checks needed

151 end if ! same values

152 end do ! over sparse rows

153 else I sizes differ so vectors must be different

154 t _or _f = .[false.

155 end if ! sizes match

156 end function is _equal _to

157

158 function largest _index (s) result(row)

159 type (sv), intent(in) :: s I sparse vector

160 integer ;o row ! last non-zero in full vector

161 integer | ! loops

162 row = 0 ! initalize

163 if (s%non _zeros < 1) return I null vector

164 doH' = s%non _zeros, 1, -1 ! loop backward

165 if (s%values(j) /= 0.0) then ! last non-zero term

166 row = s%rows(j) ! actual row number

167 return | search done

168 end if

169 end do

170 end function largest _index

171

172 function length (name) result (n)

173 type (sv), intent(in) :: name

174 mteger

175 n = name % non _zeros ! read access to size, if private

176 end function length

177

Once again we observe that the next two functions employ the colon operator (lines 185,196,199,201)
to avoid explicit serial loops which would make them faster on certain vector and parallel computers.
178] function norm (name) result (total)

179 type (sv), intent(in) :: name
180 real o total
181 if (name%non _zeros < 1) then

©2001 J.E. Akin 58

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

©2001

I print *, "Warning: empty vector in norm"

total = 0.0
else
total = sqrtﬁ sum(name%values(1l:name%non _zeros)**2))
end if ! a null vector
end function norm
function normalize _Vector (s) result (new)
type (sv), intent(in) :: s
type (sv onew
real . total, epsilon = 1.e-6
allocate (new%rows (s%non _zeros
allocate (new%values(s%non _zeros
new%non _zeros = s%non _zeros | copy size
new%rows(l:s%non _zeros) = s%rows(l:s%non _zeros) ! copy rows
total = sqgrt(sum(s%values(1:s%non _zeros)**2)) | norm
if (total <= epsilon) then ! divide by 0 ?
new%values(1:s%non _zeros) = 0.d0 | set to zero
se ! or real values
new%values(1:s%non _zeros) = s%values(1:s%non _zeros)/total
end if ! division by zero
end function normalize _Vector
subroutine pretty (s) ! print all values if space allows
type (sv), intent(in) :: s | sparse vector
integer, parameter = limit = 20 ! for print size
integer ton
real o full(s%rows(s%non _zeros)) ! temp
n = s%non _zeros
if (s%non _zeros < 1 .or. s%rows(s%non _zeros) > limit) then
print *, "Wrong size to pretty print"
else
full = 0. ! initialize to zero
if (n > 0) full(s%rows) = s%values ! array copy non zeros
print *"[", full,"]" I pretty f)rint
end if ; end subroutine pretty ! automatic deallocate of full
subroutine read _Vector (name) | sparse vector data on unit 1
type (sv), intent(inout) :: name
integer o length, j
read (1,(il1)", advance = 'no’) length
if (length <= 0) stop "Invalid length in read _Vector"

name % non _zeros = length

allocate 2 name % rows (length))

allocate (name % values (length))

read (1,*) (name%rows(j), name%values(j), j = 1, length)

name%rows = name%rows + 1 ! default to 1 not O in F90
end subroutine read _Vector

function real _mult _Sparse (a, b) result (new)
I scalar * vector

real, intent(in) :: a
type Esvg, intent(in) :: b
type (sv L new

allocate (new%rows (b%non _zeros

allocate (new%values(b%non _zeros
new%non _zeros = b%non _zeros
if (b%non _zeros < 1) then

print *, "Warning: zero size in real _mult _Sparse
else ! copy array components

new%rows (1:b%non _zeros) = b%rows (1:b%non _zeros
new%values(l:b%non _zeros) = a * b%values(1:b%non _zeros
end if ! null vector
end function real _mult _Sparse
function rows _of (s) result(n) ! copy rows array of s
type (sv) 1 s | sparse vector
integer 1 n(s%non _zeros) | standard array
if (s%non _zeros < 1) stop "No rows to extract, rows _of"
n = s%rows ! array copy
end function rows _of
subroutine set _element (s, row, value)
| Set, or insert, value into row of a sparse vector, s
type (sv), intent(inout) :: s | sparse vector
integer, intent(in) I row ! full vector row
real, intent(in) o value ! full vector value
type (sv) new ! workspace
logical :: found I true if row exists
integer : J, where ! loops, locator
found = .false. I initialize
where = 0 I initialize
do j =1, s%non _zeros
if (s%rows(j) == row) then ! found it
s%values(]) = value ! value changed
J.E. Akin 59

267 return I no insert needed
268 end if

269 if (s%rows(j) > row) then

270 where = | I insert before j

271 exit ! the loop search

272 else ! s%rows(J) < row, may be next or last
273 where = j +

274 end if

275 end do ! over current rows in s

276 if (.not. found) then ! expand and insert at where

277 if (where == 0) stop "Logic error, set _element"
278 new%non _zeros = s%non _zeros + 1

279 allocate (new%rows (new%non _zeros

280 allocate (new%values(new%non _zeros

281 ! copy preceeding rows

282 if (where > 1) then ! copy to front of new

283 new%rows (l:where-1) = s%rows (1:where-1) ! array copy
284 new%values(l:where-l? = s%values(l:where-1) ! array copy
285 end if ! copy to front of new

286 ! insert, copy following rows of s

287 new%rows (where) = row I insert
288 new%values(where = value I insert
289 new%rows (where+1l:) = s%rows (where:) | array copy
290 new%values(where+1:) = s%values(where:) | array copy
291 ! deallocate s, move new to s, deallocate new

292 call delete _Sparse _Vector (s) | delete s
293 call equal _Vector (s, new) I s <- new
294 call delete _Sparse _Vector (new) | delete new
295 end if ! an insert is required

296 end subroutine set _element

297

298 subroutine show (s) ! alternating row number and value

299 type (sv) s | sparse vector

300 integer :: j, k ! implied loops

301 k = length (s)

302 if (k ==20) then

303 print *, k ; else ; Prmt in C++ style rows

304 print * ((s%rows(j)-1), sY%val ues(j), j = 1, k)

305 end if ; end subroutine show

306

307 subroutine show _r_v (s) ! all rows then all values

308 type (sv) s | sparse vector

309 print *, "Vector has ", s%non _zeros, " non _zero terms."
310 If (s%non _zeros > 0) then

311 print *, "Rows: ", s%rows - 1 I to look like C++

312 print *, "Values: ", s%values

%ﬁ end if ; end subroutine show _r_v

315 function size _of (s) result(n)

316 type (sv) ' s

317 integer :n

318 n = s%non _zeros ; end function size _of

319

320 function Sparse _mult _real (a, b) result (new)

321 I vector * scalar

322 real, intent(in) :: b

323 type Esvg, intent(in) :: a

324 type (sv. onew

325 new = real _mult _Sparse (b, a) ! reverse the order

326 end function Sparse _mult _real

327

In the following subtraction and addition functions we again note that sparse terms with the same
values but opposite signs can result in new zero terms in the resulting vector. A temporary automatic
workspace vectofyll , is used to hold the preliminary results. In this case it must have a size that is the
maximum of the two given vectors. Thus, tlaxintrinsic is employed in itgimension attribute (lines
331,344) which is opposite the earlier multiplication example (line 65).

328 function Sub _Sparse _Vectors (u, v) result (w) ! defines -

329 type (sv), intent(in) :: u, v

330 type (sv

331 real :: full(max(u%rows(u%non _zeros), & ! automatic
332 & v%rows(v%non _zeros))) ! workspace
333 if E u%non _zeros <= 0 ; stop "First vector doesn't exist"
334 if (v%non _zeros <= 0) stop "Second vector doesn't exist"
335 full = 0.0 | set to zero

336 full(u%rows) = u%values I copy first values
337 full(v%rows) = full(v%rows) - v%values ! less second values
338 w = Vector _To_Sparse (full) | delete any zeros
2431(9) end function Sub _Sparse _Vectors ! automatically deletes full
341 function Sum _Sparse _Vectors (u, v) result (w) ! defines +

342 type (sv), intent(in) :: u, v

©2001 J.E. Akin 60

343 type ﬁsv) W

344 real :: full(max(u%rows(u%non _zeros), & ! automatic
345 & voerows(vd%non _zeros) ! workspace
346 if g u%non _zeros <= 0 g stop "First vector doesn't exist"
347 if (v%non _zeros <= 0) stop "Second vector doesn't exist"
348 full = 0. | set to zero

349 full(u%rows) = u%values ! copy first values
350 full(v%rows) = full(v%rows) + v%values ! add second values
351 w = Vector _To_Sparse (full) | delete any zeros
352 end function Sum _Sparse _Vectors ! automatically deletes full
353

354 function value _of (s) result(v) ! copy values of s

355 type (sv) @ s | sparse vector

356 real 1 v(s%non _zeros) | standard array

357 if (s%non _zeros < 1) &

358 stop "No values to extract, in values _of"

359 v = s%values | array copy

360 end function values _of

361

362 function Vector _max_value (a) result (v)

363 type (sv), intent(in) :: a

364 real LV

365 v = maxval (a%values(1l:a%non _zeros)) ! intrinsic function
366 I is it a sparse vector with a false negative maximum ?

367 if (a%non _zeros < a%rows(a%non _zeros) .and. v < 0.) v = 0.0
368 end function Vector _max_value

369

370 function Vector —min _value (a) result (v)

371 type (sv), intent(in) :: a

372 real SR

373 v = minval (a%values(1l:a%non _zeros)) ! intrinsic function
374 I is it a sparse vector with a false positive minimum ?

375 if (a%non _zeros < a%rows(a%non _zeros) &

376 and. v > 0.) v=200

377 end function Vector —min _value

378

This function is invoked several times in other member functions. It simply accepts a standard (dense)
vector and converts it to the sparse storage mode in the return result.

379 function Vector _To_Sparse (full) result (sparse)

380 real, intent(in) :: full(}) | standard array

381 type (sv) ;1 sparse | sparse vector copy

382 integer :J, n, number ! loops and counters

383 n = count (full /= 0.0) I count non _zeros

384 Vif (n == 0) print *, "Warning: null full vector "

385 allocate (sparse%rows(n), sparse%values(n))

386 sparse%non _zeros = n I sparse size

387 number =0 ! non zeros inserted

388 do j = 1, size(full)

389 if (fullj) == 0.0) cycle ! to next j value

390 number = number + 1 ! non zeros inserted
391 sparse%rows(number) = j ! row number in full
392 sparse%values(number) = full(j) I value

393 if (number == n) exit ! all non _zeros found
394 end do ; end function Vector _To_Sparse

395

396 function zero _sparse () result (s)

397 type (sv) :: s | create sparse null vector

398 s%non _zeros = 0

399 allocate (s%rows(0), s%values(0)); end function zero _sparse
400] end module class _sparse _\Vector

C.7 Problem 4.11.1 : countthe lines in an external file

1] function inputCount(unit) result(linesOflnput)

2] !

3] ! takes a file number, counts the number of lines in that
4] ! file, and returns the number of lines.

5] !

6] implicit none

7] integer, intent(in) : unit ! file unit number

8] integer :: linesOflnput ! result

9] integer ioResult I system |/O action error code

10] character temp ! place to hold the character read
11

12 rewind (unit) ! go to the front of the file
13 linesOflnput = 0 I initially, there are 0 lines
14

15 do ! Until iostat says we've hit the end _of _file
16 read (unit,’(A)’, iostat = ioResult) temp I one char

©2001 J.E. Akin 61

C.8

if (ioResult == 0) then ! there were no errors
linesOflnput = linesOflnput + 1 ! increment lines
else if (ioResult < 0) then I we've hit end-of-file
exit ! so exit this loop.
else ! ioResult is positive, which is a user error
write (*,*) ‘inputCount: no data at unit =', unit
stop 'user read error’
end if
end do
rewind(unit) ! go to the front of the file

end Function inputCount

Problem 4.11.3 : computing CPU time useage

While this is mainly designed to show the use of the moduale_toc you should note that the intrinsic
way of printing a date or time is not “pretty” and could be easily improved.

C.9

program watch
|

| Exercise DATE _AND_TIME and SYSTEM_CLOCK functions.
!

use tic _toc

implicit none

character* 8 :: the _date

character*10 :: the _time

integer Tk
|

call date _and _time 5 DATE = the _date ;

call date _and _time (TIME = the _time

print *, 'The date is ’, the _date, &

& " and the time is now ’, the _time
! Display facts about the system clock.

print *, * "’

call system _clock (COUNT _RATE = rate)

print *, 'System clock runs at ’, rate,&
& ' ticks per second’

! Call the system clock to start an execution timer.

call tic
!
I call run _the _job, or test with next 3 lines
do k = 1, 9999
j = sqrt (real(k*k))
end do o o
! Stop the execution timer and report execution time.
print *, "’
print *, "Job took ’, toc (), ' seconds to execute.
end program watch I Running gives

! The date is 19980313 and the time is now 171837.792
I System clock runs at 100 ticks per second
! Job took 0.9999999776E-02 seconds to execute.

Problem 4.11.4 : converting a string to upper case

The change from th® _lower should be obvious here. It seems desirable to place these two routines,
and others that deal with strings into a single strings utility module.

function to _upper (string) result (new _string) ! like C
|

! Convert a string or character to upper case
! (valid for ASCII or EBCDIC processors)
|

implicit none

character (len = *), intent(in) :: string ! unknown length

character (len = len(string)) I new _string ! same length
character (len = 26), parameter :: &

UPPER = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', &
lower = 'abcdefghijkimnopgrstuvwxyz’
integer :: k ! loop counter
integer :: loc ! position in alphabet
new _string = string ! copy everything
do k = 1, len(string) | to change letters
loc = index (lower, string(k:k)) ! locate
if (loc /= 0) new _string(k:k) = UPPER(loc:loc) ! convert
end do ! over string characters
end function to _upper

©2001 J.E. Akin 62

C.10 Problem 4.11.8 : Read two values from each line of an external file

% |subroutine readData (inFile, lines, X, y)

3] | Take a file number, the number of lines to be read,
4] ! and put the data into the arrays x and y

5] !

6] ! inFile is unit number to be read

71 ! lines is number of lines in the file

8] ! «x is independent data

9 'y is dependent data

10 implicit none

11 integer, intent(in) :: inFile, lines

12 real, intent(out) :: x(lines), y(lines)

13 integer D

14

15 rewind (inFile) ! go to front of the file
16 do j = 1, lines ! for the entire file
17 read (inFile, *) x(j), y() ! get the x and y values
18 end do ! over all lines

19] end subroutine readData

C.11 Problem 4.11.14 :Two line least square fits

The extension of the single-line least squares fit shown in Fig. 4.21 is rather straightforward in that we
will call subroutine Isq_fit multiple times. In line 37 we first call it in case a single-line fit may be more
accurate than the expected two-line fit.

1] program two _line _lIsq _fit

2] !

3] ! Best two-line linear least-squares fit of data in

4] ! file specified by the user, and split in two sets

5] !

6 implicit none]

7 real, allocatable :: x (:) ! independent data

8 real, allocatable :: y (:) ! dependent data

9

10 real i fit§3), fit1(3), fit2(3) ! error results

11 real 2 left(3), right(3) ! best results
12 real L error ! current error
13 real L error _min ! best error
14 integer :: split ! best division
15

16 integer, parameter :: filenumber = 1 ! input unit
17 character (len = 64) :: filename I input file
18 integer i lines] I of input
19 integer o inputCount, j ! loops

20

21] ! Get the name of the file containing the data.

22 write (*, *) 'Enter the data input filename:’

23 read (*, *) filename

24

25] | Open that file for reading.

26 open (unit = filenumber, file = filename)

27

28] ! Find the number of lines in the file

29 lines = inputCount (filenumber)

30 write (*, *) 'There were ’lines,’” records read.’

31

32] ! Allocate that many entries in the x and y array
33 allocate (x(lines), y(lines)))

34 call read _xy _file (filenumber, lines, x, y) ! Read data
35 close (filenumber)

36

37 call Isg _fit (lines, x, vy, fit) ! single line fit
38 print *, "Single line fit"

39 print *, “the slope is ", fit(1)

40 print *, “the intercept is ", fit(2

41 print *, “"the error is " fit(3)

42

After that we want to try all the reasonable choices for breading the data set into two adjacent regions
that are each to be fit with a different straight line. Trial variables were defined in lines 10 and 12, while
the best results found are in variables declared in lines 11, 13, and 14. Note that on line 48 we have
required that at least three points be used to define an approximate straight line. If we allowed two points
to be employed we would get a false (or misleading) indication of zero error for such a choice. Thus, in

©2001 J.

E. Akin 63

line 48 we begin a loop over all possible sets of three or more data points and cdit feg each of the
two segments, as seen in lines 50 and 51.

43] ! Loop to determine the mean squared error for each

3%1 : of the possible two divisions of the data

46 error _min = HUGE(error _min) ! initialize the error —min
47 split = 3 I initialize split point

48 do j = 3, lines-3 | 3 pts to approximate a line

49] | least-squares fit of two data subsets

50 call Isq _fit (j, x(1:)), y(1:j), fit1)

51 call Isq _fit (lines-j, x(j+1:lines), y(j+1l:lines), fit2)

52 error = fit1(3) + fit2(3)

53

In splitting up the two data regions not that it was not necessary to copy segments of the independent
and dependent data. Instead the colon operator, or implied do loops, were used in lines 50 and 51 to pass
vectors withj and(lines — j) entries, respectively to the two calls to Isfit. After combining the two
errors, in line 52, we update the current best choice for the data set division point in lines 55 through 58.

[54] ! does this division gives you a smaller error ?
[55] if (error < error _min) then

[56] error _min = error ; split = j

[57] left = fitl ; right = fit2

[58] end if ! current best choice

[59] end do ! of split choices

After we exit the loop, at line 59, we simply list the best results obtained. In line 73 we have also
deallocated the data arrays even thoughit is just a formality at this point since all memory is released at the
program terminates immediately afterwards. Had this been a subroutine or function then we would need
to be sure that allocated variables are released when their access scope has terminated. Later versions of
Fortran will do that for you, but good programmers should keep up with memory allocations.

60] ! Display the results

61 print *, "Two line best fit; combined error is ", error _min
62 print *, "Best division of the data is:"

63 print *, “data(:j), data(j+1:), where j = ", split
64 print *, "Left line fit:"

65 print *, "the slope is ", left(1)

66 print *, “the intercept is ", left(2)

67 print *, “the error is " left(3)

68 print *, "Right line fit:"

69 print *, "the slope is ", right(1)

70 print *, “the intercept is ", right(2)

71 print *, “the error is ", right(3)

72

73 deallocate (y, x)

74] end program two _line _lIsq _fit

75

For completeness an input routine, reaqy _file, is illustrated. It is elementary since it does not
check for any read errors, and thus does not allow for any exception control if the read somehow fails.

76] subroutine read _xy _file (infile, lines, X, y)

77 !

78] ! Take a file number, the number of lines to be read,
79] ! and put the data into the arrays x and y

80] !

81 implicit none

82 integer, intent(in) :: inFile ! unit to read

83 integer, intent(in) :: lines I length of the file
84 real, intent(out) :: x(lines) ! independent data
85 real, intent(out) :: y(lines) I dependent data

86 integer j

87 rewind (inFile) ! go to front of the file

88 do j = 1, lines I for the entire file
89 read (infile, *) x(j), y() ! get the x and y values
90 end do ! over all lines

g% end subroutine read _xy _file

If the supplied data file was huge, say argument lines has a value of ten million, the such data would
probably have been stored in a binary rather that a formatted file. In that case we would simply invoke a
binary read by re-writing line 89 as

[89] read (infile) x(), y(j) ! binary read of x and y

©2001 J.E. Akin 64

Such a change would yield a much faster input, but would still be relatively slow due to being in the loop
starting at line 88. To get the fastest posible input we would have had to have saved the binary data on the
file such that all the x values were stored first, followed by all the corresponding y values. In that case,
we avoid the loop and get the fastest possible input by replacing lines 88-90 with:

88
89
90

Here we will not go into the details about how we would have to replace subroutine inputCount an
equivalent one for binary files. To do that you will have to study the Fortran INQUIRE statement for
files, and its IOLENGTH option to get a hardware independent record lenght of a real variable.

! sequential binary read of x and y values
read (infile) x, y
! input complete, add iostat for exceptions

93] ! Given test data in file two

94] ! 0.0000000e+00 1.7348276e+01
95] ! 1.0000000e+00 6.5017349e+01
96] ! 2.0000000e+00 8.7237749e+01
97] ! 3.0000000e+00 1.2433478e+02
98] ! 4.0000000e+00 1.5456681e+02
99] ! 5.0000000e+00 1.8956219e+02
100] ! 6.0000000e+00 2.1740486e+02
101] ! 7.0000000e+00 2.3138619e+02
102] ! 8.0000000e+00 2.7995041e+02
103] ! 9.0000000e+00 3.1885162e+02
104] ! 1.0000000e+01 3.4628642e+02
105] ! 1.1000000e+01 3.3522546e+02
106] ! 1.2000000e+01 3.7626218e+02
107] ! 1.3000000e+01 3.9577060e+02
108] ! 1.4000000e+01 4.2217988e+02
109] ! 1.5000000e+01 4.3388828e+02
110] ! 1.6000000e+01 4.5897959e+02
111] ! 1.7000000e+01 4.9506511e+02
112] ! 1.8000000e+01 5.0747649e+02
113] ! 1.9000000e+01 5.2168101e+02
114] ! 2.0000000e+01 5.2976511e+02

Assuming the formatted data are stored in file tMioe.dat, as shown above we obtain the best two
straight ine fit.

115] ! Running the program gives:

116] !

117] ! Enter the data input filename: two _line.dat
118] ! There were 21 records read.

119] ! Single line fit

120] ! the slope is 25.6630135

121] ! the intercept is 53.2859993

122] ! the error is 343.854675

123] ! Two line best fit; combined error is 126.096634
124] ! Best division of the data is:

125] ! data(;j), data(j+1:), where j = 11

126] ! Left line fit:

127] ! the slope is 31.9555302

128] ! the intercept is 24.9447269

129] ! the error is 46.060421

130] ! Right line fit:

131] ! the slope is 21.6427555

132] ! the intercept is 112.166664

%gi ! the error is 80.0362091

Check this out by plotting the data points and the three straight line segments. Just remember that the
first line covers the whole domain, while the second goes only up to halfway between points 11 and 12
while the third line runs from there to the end of the independent data.

C.12 Problem 4.11.15 :Find the next available file unit

The INQUIRE statement has a lot of very useful features that return information based on the unit number,
or the file name. It can also tell you how much storage a particular type of record requires (like the sizeof
function in C and C++). Here we use only the ability to determine if a unit number is currently open. To
do that we begin by checking the unit number that follows the last one we utilized. Line 9 declares that
variable, last unit and initializes it to 0. The save attribute in that line assures that the latest value of
last_unit will always be saved and available on each subsequent use of the function. Since the standard
input/output units have numbers less that ten we allow the unit numbers to be used to range from 10 to
999, as seen in line 8. However, the upper limit could be changed.

©2001 J.E. Akin 65

Lines 14-18 determine if the unit after lasinit is closed. If so that unit will be used and we are
basically finished. We set the return value, next, update last, and return.

1] function get _next _io _unit () result (next)

2 !*****************************

3] ! find a unit number available for i/o action

4 !*****************************

5 implicit none

6 integer :: next I the next available unit number

7

8 integer, parameter :: min _unit = 10, max _unit = 999
9 integer, save o last _unit = 0 I initialize

10 integer :» count ! number of failures
11 logical . open ! file status

12

13 count = 0 ; next = min —unit - 1

14 if (last —unit > 0) then ! check next in line

15 next = last —unit + 1

16 inquire (unit=next, opened=open)

17 if (.not. open) last _unit = next ! found it

18 return

Otherwise, if the unit after lastunit is open we must loop over all the higher unit numbers in search of
one that is closed. If we succeed then we update lasit and return by exiting the forever loop, as seen
in lines 24 and 25.

19 else ! loop through allowed units

20 do ! forever

21 next = next + 1

22 inquire (unit=next, opened=open)

23 if (.not. open) then

24 last _unit = next I found it
25 exit ! the unit loop

26 end if

At this point it may be impossible to find a unit. However, with 999 units available it is likely that
one that was previously in use has now been closed and is available again. Before aborting we reset the
search and allow three cycles to find a unit that is now free. That is done in lines 27-31.

27 if ? next == max _unit) then ! attempt reset 3 times
28 ast _unit = 0

29 count = count + 1

30 if (count <= 3) next = min —unit - 1

31 end if ! reset try

In the unlikely event that all allowed units are still in use we abort the function after giving some
insight to why.

32 if (next > max _unit) then ! abort

33 print *’ERROR: max unit exceeded in get _next _io _unit’
34 sto 'ERROR: max unit exceeded in get _next _io _unit’
35 end ir ! abort

36 end do ! over unit numbers

37 end if ! last _unit

38] end function get _next _io _unit

C.13 Problem 5.4.4 : polymorphic interface for the class ‘PositionAngle’

1] module class _Position _Angle ! file: class _Position _Angle.fo0
2 use class _Angle

3 implicit none

4 type Position _Angle I angle in deg, min, sec

5 private

6 Integer :: deg, min | degrees, minutes

7 real I sec ! seconds

8 character :: dir IN|S E| W

9 end type

The above type definitions are unchanged. The only new part of the module for this class is the INTER-
FACE given in the following four lines.

[10] interface Position _Angle _ ! generic constructor

11 module procedure Decimal _sec, Decimal _min

12 module procedure Int _deg, Int _deg_min, Int _deg_min _sec
13 end interface

14] contains

Returning to the originahain program:

©2001 J.E. Akin 66

1] program main

2 use class _Great _Arc

3 implicit none

4 type EGreat _Arc) arc

5 type (Global —Position) :: g1, g2
6 type (Position _Angle) : al, a2
7 type Angle) ;o ang

8 real 1 deg, rad

We simply replace all the previous constructor calls with the generic funétsition
shown on lines 8 through 17 below.

9 al = Position _Angle _ (10, 30, 0., "N") ! note decimal point
10 call List _Posmon _Angle (al)

11 al = Position _Angle _ (10, 30, 0, "N")

12 call List _Position _Angle (al)

13 al = Position _Angle _ (10, 30, "N")

14 call List Position _Angle (al)

15 al = Position _Angle _ (20, "N")

16 call List _Position _Angle (al)

17 a2 = Position _Angle _ (30, 48, 0., "N")

18 call List _Position _Angle (a2)

C.14 Problem 6.4.1 : uUsing a function with the same name in two classes

_Angle _ as

1] include ’class _X.fo0’

2] include 'class _Y.foo’

3] program main ! modified from Fig. 4.6.2-3F

4 use class _Y, Y _f => f | renamed in main

5 implicit none

6 type X _) = x z; type (Y)y

7 x%a = 22 | assigns 22 to the a defined in X
8 call X _f(x) ! invokes the f() defined in X

9 print *"x%a = ", x%a ! lists the a defined in X

10 y¥a = 44 ! assigns 44 to the a defined in Y
11 x%a = 66 | assigns 66 to the a defined in X
12 call Y _f(y ! invokes the f() defined in Y

13 call X _f(x ! invokes the f() defined in X

14 print *"y%a = ", y%a ! lists the a defined in X

15 print *"x%a = ", x%a ! lists the a defined in X

16 z%a = y%a I'assign Y ato z in X

17 print *"z%a = ", z%a ! lists the a defined in X

18] end program main ! Running gives:
19] I X _ f() executing I x%a = 22

200 'Y _ f executlng I X _ f() executing

21] | y%a = I x%a = 66

22] | z%a = 44

C.15 Problem 6.4.3 : Revising the employee-manager classes

The changes are relatively simple. First we add two lines nEthanyee class:
interface setData ! a polymorphic member
module procedure setDatakE ; end interface

Then we change two other lines:

setData ("Burke", "John", 25.0)

"Jan", 1200.0) ! constructor

[8] empl =
.[121]' mgr = Manager _ ("Kovacs",

The genericetData could not also contaigetDataM because it has the same argument signature as
setDataE and the compiler would not be able to tell which dynamic binding to select.

©2001 J.E. Akin 67

68

Appendix D

Companion C++ Examples

D.1 Introduction

It is necessary to be multilingual in computer languages today. Since C++ is often used in the OOP
literature it should be useful to have C++ versions of the same code given earlier in F90. In most cases
these examples have the same variable names and the line numbers are usually very close to each other.
This appendix will allow you to flip from F90 examples in Chapter 4 of the main body of the text to see
similar operations in C++.

1] #include <iostream.h> // system i/o files

2] #include <math.h> /I "system math files

3] main ()

4] /I Examples of simple arithmetic in C++

5

6 int Integer _Var _1, Integer _Var _2; [/ user inputs

7 int Mult _Result, Div. _Result, Add _Result

8 int Sub _Result, Mod _Result;

9 double Pow _Result, Sqrt _Result;

10 cout << "Enter two integers: ";

11 cin >> Integer _Var _1, Integer _Var _2;

12

13 Add _Result = Integer _Var _1 + Integer _Var _2;

14 cout << Integer _Var _1 << " + " << Integer _Var _2 << " ="
15 << Add _Result << endl;

16 Sub _Result = Integer _Var _1 - Integer _Var _2 ;

17 cout << Integer _Var _1 << " - " << Integer _Var _2 << " ="
18 << Sub _Result << endl;

19 Mult _Result = Integer _Var _1 * Integer _Var _2 ;

20 cout << Integer _Var _1 << " * " << Integer _Var _2 << " ="
21 << Mult _Result << endl;

22 Div _Result = Integer _Var _1 / Integer _Var _2 ;

23 cout << Integer _Var _1 << " | " << Integer _Var _2 << " ="
24 << Div _Result << endl;

25 Mod _Result = Integer _Var _1 % Integer _Var _2; // remainder
26 cout << Integer _Var _1 << " % " << Integer _Var_2 << " ="
27 << Mod _Result << endl;

28 Pow _Result = pow ((double)integer _Var _1, (double)integer _Var _2);
29 cout << Integer _Var _1 << " 7 " << Integer _Var _2 << " ="
30 << Pow _Result << endl;

31 Sgrt _Result = sgrt(gdouble)lnteger _Var _1);

32 cout << "Square root of " << Integer _Var _1 << " is "

33 << Sgrt _Result << endl;

34 } /I end main, Running produces:
35] /[Enter two integers: 25 4
5 4 = 29

36] /1 25 +

371 1125 - 4 = 21

38 /125 * 4 = 100

39] /125 | 4 = 6, note integer
411 /125 % 4 = 1

421 /125 © 4 = 390625

43] /I Square root of 25 = 5

Figure D.1: Typical Math and Functions in C++

©?2001 J.E. Akin 69

=
QOO ~NOUITDRWN -

OO~ TS WN -

O©OO~NDTLAWN -

#include <iostream.h> // system i/o files
main ()
/I Examples of a simple loop in C++

int Integer _Var;
for (Integer _Var = 0; Integer _Var < 5; Integer _Var ++)
cout << "The loop variable is: " << Integer _Var << endl;
} /I end for
cout << "The final loop variable is: " << Integer _Var << endl
} /I end main /I Running produces:

/" The loop variable is:
/I The loop variable is:
/I The loop variable is:
/I The loop variable is:
/Il The loop variable is:
/I The final loop variable is: 5 <- NOTE

AWNRO

Figure D.2: Typical Looping Concepts in C++

#include <iostream.h> // system i/o files
main ()
/I Examples of simple array indexing in C++

int MAX = 5, loopcount;

int Integer _Array[5] ;

/I or, int" Integer _Array[5] = {10, 20, 30, 40, 50 4
Integer _Array[0] = 10 ; // C arrays start at zero

Integer _Array[l] = 20 ; Integer _Array[2] = ;

Integer _Array[3] = 40 ; Integer _Array[4] = 50 ;

for (loopcount = 0; loopcount < MAX; loopcount ++)
cout << "The loop counter is: " << loopcount
<< " with an array value of: " << Integer
/I end for loop
cout << "The final loop counter is: " << loopcount << endl ;

} /I end main

/[Running produces:
/I The loop counter is:
/I The loop counter is:
/[The loop counter is:

with an array value of: 10
with an array value of: 20
with an array value of: 30
/[The loop counter is: 3 with an array value of: 40
/[The loop counter is: 4 with an array value of: 50
/I The final loop counter is: 5

AWNFRO

Figure D.3: Simple Array Indexing in C++

#include <iostream.h> // system i/o files
main ()) i]
/I Examples of relational "if" operator, via C++

int Integer _Var _1, Integer _Var _2; // user inputs
cout << "\nEnter two integers: ";
cin >> Integer _Var _1, Integer _Var _2;
if (Integer _Var _1 > Integer _Var _2)
cout << Integer _Var _1 << " is greater than " << Integer _Var _2;
if (Integer _Var _1 < Integer _Var _2)
cout << Integer _Var _1 << " is less than " << Integer _Var _2;
if (Integer _Var _1 == Integer _Var _2)
cout << Integer _Var _1 << " is equal to " << Integer _Var _2;

} /I end main
/I Running with 25 and 4 produces: 25 4

/[Enter two integers:
/I 25 is greater than 4

Figure D.4: Typical Relational Operators in C++

©2001 J.E. Akin 70

1] #include <iostream.h>

2] main () .) o

i /I lllustrate a simple if-else logic in C++

5 int Integer _Var;

6

7 cout << "Enter an integer: ";

8 cin >> Integer _Var;

9

%(1) if (Integer _Var > 5 && Integer _Var < 10)

12 cout << Integer _Var << " is greater than 5 and less than 10"
13 << endl, g}

14 else

15 {

16 cout << Integer _Var << " is not greater than 5 and less than 10"
g << endl; /I end of range of input

19 } /I end program main

20

21] /I Running with 3 gives: 3 is not greater than 5 and less than 10

22] /I Running with 8 gives: 8 is greater than 5 and less than 10

Figure D.5: Typical If-Else Uses in C++

©2001 J.E. Akin 71

1] #include <iostream.h>

2] main

2 /I Examples of Logical operators in C++

5 int Logic _Var _1, Logic _Var _2;

6

7 cout << "Enter logical value of A (1 or 0):

8 cin >> Logic _Var _1;

9

10 cout << "Enter logical value of B (1 or 0): ;
11 cin >> Logic _Var _2;

12

13 cout << "NOT A is " << lLogic _Var _1 << endl;
14

15 if (Logic _Var _1 && Logic _Var _2)
16

17 cout << "A ANDed with B is true " << endl;
18

19 else

20

21 cout << "A ANDed with B is false " << endl;
22 } /I end if for AND

23

24 if (Logic _Var _1 || Logic _Var_2)

25

26 éout << "A ORed with B is true " << endl;
27

28 else

29

30 cout << "A ORed with B is false " << endl;
g% } /I end if for OR

33 if (Logic _Var _1 == Logic _Var _2)

34

35 cout << "A EQiValent with B is true " << endl;
36

37 else

38

39 cout << "A EQiValent with B is false " << endl;
40 } /I end if for EQV

41

42 if (Logic _Var _1 != Logic _Var_2)

43

44 cout << "A Not EQiValent with B is true " << endl;
45

46 else

47

48 cout << "A Not EQiValent with B is false " << endl;
48 } /I end if for NEQV

5

51 } /I end main

52] /[Running with 1 and 0 produces:

53] /I Enter logical value of A §1 or 03: 1

54] /I Enter logical value of B (1 or 0): O

55] /I NOT Ais O

56] /[A ANDed with B is false

57] /I A ORed with B is true

58] // A EQiValent with B is false

59] /I A Not EQiValent with B is true

Figure D.6: Typical Logical Operators in C++

©2001 J.E. Akin 72

1] /I Program to find the maximum of a set of integers
2] #include <iostream.h>

3] #include <stdlib.h> // for exit

4] #define ARRAYLENGTH 100

5] long integers]ARRAYLENGTH];

6

7] I Function interface prototype

g long maxint(long [], long);

10] // Main routine

11

12] main() { /I Read in the number of integers
13] long I, n;

14

15 cout << "Find maximum; type n: "; cin >> n;
16 if (n > ARRAYLENGTH [| n < 0)

17 cout << "Value you typed is too large or negative." << endl;
18 exit(1);

19 } /I end fif

20

21 for (i = 0; i < n; i++) { /I Read in the user's integers
22 cout << "Integer " << (i+1) << ™ "; cin >> integers[i]; cout
23 << endl; } /I end for

24 cout << "Maximum: ", cout << maxint(integers, n); cout << endl;
25 } /I end main

26

27] /I Find the maximum of an array of integers

28] long maxint(long input], long input _length) {

29] long i, max;

30

31 for (max = input[0], i = 1; i < input _length; i++) {
[32] if (input[i] > max)

[33] max = input[i]; } /I end if

34 } /I end for

35 return(max);

36 } /I end maxint /I produces this result

37] [/l Find maximum; type n: 4
38] /I Integer 1: 9

39] /I Integer 2: 6

40] /I Integer 3: 4

411 /I Integer 4: -99

42] [/ Maximum: 9

Figure D.7: Search for Largest Value in C++

©2001 J.E. Akin 73

1] #include <iostream.h>

2

3] /I declare the interface prototypes

4] void Change (int& Input _Val);

g void No _Change (int Input _Val);

7] main ()

8 /I illustrate passing by reference and by value in C++

10 int Input _Val;

11

12 cout << "Enter an integer: ";

13 cin >> Input _Val;

14 cout << "Input value was " << Input _Val << endl;
15

16 /[pass by value

17 No _Change (Input _Val); /I Use but do not change
18 cout << "After No _Change it is " << Input _Val << endl;
19

20 /I pass by reference

21 Change (Input _Val); /I Use and change

22 cout << "After Change it is " << Input _Val << endl;
23

24

%2 void Change (int& Value)

27] /I changes Value in calling code IF passed by reference
28 Value = 100;

%g cout << "Inside Change it is set to " << Value << endl;
31

32] void No _Change (int Value)

33

34] /I does not change Value in calling code IF passed by value
35 Value = 100; o
36 cout << "Inside No _Change it is set to " << Value << endl;

38] //° Running gives:

39] /I Enter an integer: 12

401 /I Input value was 12

41] /I Inside No _Change it is set to 100
42] I/l After No _Change it is 12

43] /I Inside Change it is set to 100

44] /I After Change it is 100

Figure D.8: Passing Arguments by Reference and by Value in C++

©?2001 J.E. Akin 74

1] #include <iostream.h>

2] main ()

3] /I Compare two character strings in C++

451 /I Concatenate two character strings together

6 char String1[40];

7 char String2[20

g int length;

10 cout << “"Enter first string (20 char max):";
11 cin >> Stringl;

12

13 cout << "Enter second string (20 char max):";
14 cin >> String2;

15

16 /I Compare

17 if (!strcmp(Stringl, String2))

18 cout << "They are the same." << endl;

19

20 else

21 cout << "They are different." << endl,

22 } /I end if the same

23

24 /I Concatenate

%g strcat(Stringl, String2) ; // add onto Stringl
27 cout << "The combined string is: " << Stringl << endl;
28 length = strlen(Stringl);

29 cout << "The combined length is: " << length << endl;
go length = strlen(Stringl);

1

32 } /I end main

33] //"Running with "red" and "bird" produces:

34] /I Enter first string (20 char max): red

35] /I Enter second string (20 char max): bird

36] /I They are different.

37] /I The combined string is: redbird

38] /I The combined length is: 7

39] /I But, "the red" and "bird" gives unexpected results

Figure D.9: Using Two Strings in C++

1] #include <iostream.h>

2] #include <stdlib.h>

£31 #include <math.h> // system math files

5] main()

(75 /I Convert a character string to an integer in C++

8 char Age _Char[5];

9 int age;

10

11 cout << "Enter your age: ";

%g cin >> Age _Char;

14 /I convert with intrinsic function

%g age = atoi(Age _Char);

17 cout << "Your integer age is " << age << endl;
18 cout << "Your hexadecimal age is " << hex << age << endl;
%8 cout << "Your octal age is " << oct << age << endl;
21 } I/ end of main

22

23] /I Running gives:

24] /I Enter your age: 45

25] /I Your integer age is 45.

26] /I Your hexadecimal age is 2d.

27] /I Your octal age is 55.

Figure D.10: Converting a String to an Integer with C++

2001 J.E. Akin 75
©

1] #include <iostream.h>

2

3] /I Define structures and components in C++

4

g struct Person /I define a person structure type

7 char Name[20];

8 int Age;

9 ;

10

11] struct Who _Where // use person type in a new structure
12

13 struct Person Guest;

14 char Address[40];

15 h

16

17] /I Fill a record of the Who _Where type components
18] main ()

19 {

%(1) struct Who _Where Record,;

22 cout << "Enter your name: "

%3 cin >> Record.Guest.Name;

4

25 cout << “"Enter your city: ";

26 cin >> Record.Address;

27

28 cout << "Enter your age: ",

%g cin >> Record.Guest.Age;

31 cout << "Hello " << Record.Guest.Age << " year old "
%%) << Record.Guest.Name << " in " << Record.Address << endl;
34] /['Running with input. Sammy, Houston, 104 gives

gg Z Hello 104 year old Sammy in Houston

37] /I But try: Sammy Owl, Houston, 104 for a bug

Figure D.11 Using Multiple Structures in C++

©2001 J.E. Akin 76

Appendix E

Glossary of Object Oriented Terms

abstract class: A class primarily intended to define an instance, but can not be instantiated without
additional methods.

abstract data type: An abstraction that describes a set of items in terms of a hidden data structure and
operations on that structure.

abstraction: A mental facility that permits one to view problems with varying degrees of detail depend-
ing on the current context of the problem.

accessor: A public member subprogram that provides query access to a private data member.
actor: An object that initiates behavior in other objects, but cannot be acted upon itself.

agent: An object that can both initiate behavior in other objects, as well as be operated upon by other
objects.

ADT: Abstract data type.
AKO: A Kind Of. The inheritance relationship between classes and their superclasses.

allocatable array: A named array having the ability to dynamically obtain memory. Only when space
has been allocated for it does it have a shape and may it be referenced or defined.

argument: A value, variable, or expression that provides input to a subprogram.

array: An ordered collection that is indexed.

array constructor: A means of creating a part of an array by a single statement.

array overflow: An attempt to access an array element with a subscript outside the array size bounds.
array pointer: A pointer whose target is an array, or an array section.

array section: A subobject that is an array and is not a defined type component.

assertion: A programming means to cope with errors and exceptions.

assignment operator: The equal symbol, “=", which may be overloaded by a user.
assignment statement:A statement of the form “variable = expression”.

association: Host association, name association, pointer association, or storage association.
attribute: A property of a variable that may be specified in a type declaration statement.

automatic array: An explicit-shape array in a procedure, which is not a dummy argument, some or all
of whose bounds are provided when the procedure is invoked.

©2001 J.E. Akin 77

base class:A previously defined class whose public members can be inherited by another class. (Also
called a super class.)

behavior sharing: A form of polymorphism, when multiple entities have the same generic interface.
This is achieved by inheritance or operator overloading.

binary operator: An operator that takes two operands.
bintree: A tree structure where each node has two child nodes.
browser: A tool to find all occurrences of a variable, object, or componentin a source code.

call-by-reference: A language mechanism that supplies an argument to a procedure by passing the ad-
dress of the argument rather than its value. If it is modified, the new value will also take effect
outside of the procedure.

call-by-value: A language mechanism that supplies an argument to a procedure by passing a copy of
its data value. If it is modified, the new value will not take effect outside of the procedure that
modifies it.

class: An abstraction of an object that specifies the static and behavioral characteristics of it, including
their public and private nature. A class is an ADT with a constructor template from which object
instances are created.

class attribute: An attribute whose value is common to a class of objects rather than a value peculiar to
each instance of the class.

class descriptor: An object representing a class, containing a list of its attributes and methods as well
as the values of any class attributes.

class diagram: A diagram depicting classes, their internal structure and operations, and the fixed rela-
tionships between them.

class inheritance: Defining a new derived class in terms of one or more base classes.
client: A software component that users services from another supplier class.
concrete class:A class having no abstract operations and can be instantiated.
compiler: Software that translates a high-level language into machine language.
component: A data member of a defined type within a class declaration

constructor: An operation, by a class member function, that initializes a newly created instance of a
class. (See default and intrinsic constructor.)

constructor operations: Methods which create and initialize the state of an object.

container class: A class whose instances are container objects. Examples include sets, arrays, and
stacks.

container object: An object that stores a collection of other objects and provides operations to access or
iterate over them.

control variable: The variable which controls the number of loop executions.

data abstraction: The ability to create new data types, together with associated operators, and to hide
the internal structure and operations from the user, thus allowing the new data type to be used in a
fashion analogous to intrinsic data types.

data hiding: The concept that some variables and/or operations in a module may not be accessible to a
user of that module; a key element of data abstraction.

©2001 J.E. Akin 78

data member: A public data attribute, or instance variable, in a class declaration.

data type: A named category of data that is characterized by a set of values. together with a way to
denote these values and a collection of operations that interpret and manipulate the values. For an
intrinsic type, the set of data values depends on the values of the type parameters.

deallocation statement: A statement which releases dynamic memory that has been previously allo-
cated to an allocatable array or a pointer.

debugger software: A program that allows one to execute a program in segments up to selected break-
points, and to observe the program variables.

debugging: The process of detecting, locating, and correcting errors in software.

declaration statement: A statement which specifies the type and, optionally, attributes of one or more
variables or constants.

default constructor: A class member function with no arguments that assigns default initial values to
all data members in a newly created instance of a class.

defined operator: An operator that is not an intrinsic operator and is defined by a subprogram that is
associated with a generic identifier.

deque: A container that supports inserts or removals from either end of a queue.
dereferencing: The interpretation of a pointer as the target to which it is pointing.
derived attribute: An attribute that is determined from other attributes.

derived class: A class whose declaration indicates that it is to inherit the public members of a previously
defined base class.

derived type: A user defined data type with components, each of which is either of intrinsic type or of
another derived type.

destructor: An operation that cleans up an existing instance of a class that is no longer needed.
destructor operations: Methods which destroy objects and reclaim their dynamic memory.
domain: The set over which a function or relation is defined.

dummy argument: An argument in a procedure definition which will be associated with the actual
(reference or value) argument when the procedure is invoked.

dummy array: A dummy argument that is an array.
dummy pointer: A dummy argument that is a pointer.
dummy procedure: A dummy argument that is specified or referenced as a procedure.

dynamic binding: The allocation of storage at run time rather than compile time, or the run time asso-
ciation of an object and one of its generic operations..

edit descriptor: An item in an input/output format which specifies the conversion between internal and
external forms.

encapsulation: A modeling and implementation technique (information hiding) that separates the exter-
nal aspects of an object from the internal, implementation details of the object.

exception: An unexpected error condition causing an interruption to the normal flow of program control.

©2001 J.E. Akin 79

explicit interface: For a procedure referenced in a scoping unit, the property of being an internal proce-
dure, a module procedure, an external procedure that has an interface (prototype) block, a recursive
procedure reference in its own scoping unit, or a dummy procedure that has an interface block.

explicit shape array: A named array that is declared with explicit bounds.

external file: A sequence of records that exists in a medium external to the program.
external procedure: A procedure that is defined by an external subprogram.

FIFO: Firstin, first out storage; a queue.

friend: A method, in C++, which is allowed privileged access to the private implementation of another
object.

function body: A block of statements that manipulate parameters to accomplish the subprogram’s pur-
pose.

function definition: Program unit that associates with a subprogram name a return type, a list of argu-
ments, and a sequence of statements that manipulate the arguments to accomplish the subprogram’s
purpose

function header: A line of code at the beginning of a function definition; includes the argumentlist, and
the function return variable name.

generic function: A function which can be called with different types of arguments.

generic identifier: A lexical token that appears in an INTERFACE statement and is associated with all
the procedures in the interface block.

generic interface block: A form of interface block which is used to define a generic name for a set of
procedures.

generic name: A name used to identify two or more procedures, the required one being determined by
the types of the non-optional arguments in the procedure invocation.

generic operator: An operator which can be invoked with different types of operands.
Has-A: A relationship in which the derived class has a property of the base class.

hashing technique: A technique used to create a hash table, in which the array element where an item
is to be stored is determined by converting some item feature into an integer in the range of the size
of the table.

heap: A region of memory used for data structures dynamically allocated and deallocated by a program.
host: The program unit containing a lower (hosted) internal procedure.
host association: Data, and variables automatically available to an internal procedure from its host.

information hiding: The principle that the state and implementation of an object should be private to
that object and only accessible via its public interface.

inheritance: The relationship between classes whereby one class inherits part or all of the public de-
scription of another base class, and instances inherit all the properties and methods of the classes
which they contain.

instance: A individual example of a class invoked via a class constructor.

instance diagram: A drawing showing the instance connection between two objects along with the num-
ber or range of mapping that may occur.

©2001 J.E. Akin 80

instantiation: The process of creating (giving a value to) instances from classes.

intent; An attribute of a dummy argument that which indicates whether it may be used to transfer data
into the procedure, out of the procedure, or both.

interaction diagram: A diagram that shows the flow of requests, or messages between objects.
interface: The set of all signatures (public methods) defined for an object.

internal file: A character string that is used to transfer and/or convert data from one internal storage
mode to a different internal storage mode.

internal procedure: A procedure contained within another program unit, or class, and which can only
be invoked from within that program unit, or class.

internal subprogram: A subprogram contained in a main program or another subprogram.

intrinsic constructor: A class member function with the same name as the class which receives initial
values of all the data members as arguments.

Is-A: A relationship in which the derived class is a variation of the base class.

iterator: A method that permits all parts of a data structure to be visited.

keyword: A programming language word already defined and reserved for a single special purpose.
LIFO: Lastin, first out storage; a stack.

link: The process of combining compiled program units to form an executable program.

linked list: A data structure in which each element identifies its predecessor and/or successor by some
form of pointer.

linker: Software that combines object files to create an executable machine language program.
list: An ordered collection that is not indexed.

map: An indexed collection that may be ordered.

matrix: A rank-two array.

member data: Variables declared as components of a defined type and encapsulated in a class.
member function; Subprograms encapsulated as members of a class.

method: A class member function encapsulated with its class data members.

method resolution: The process of matching a generic operation on an object to the unique method
appropriate to the object’s class.

message:A request, from another object, for an object to carry out one of its operations.

message passingThe philosophy that objects only interact by sending messages to each other that re-
guest some operations to be performed.

module: A program unit which allows other program units to access variables, derived type definitions,
classes and procedures declared within it by USE association.

module procedure: A procedure which is contained within a module, and usually used to define generic
interfaces, and/or to overload or define operators.

nested: Placement of a control structure inside another control structure.

©2001 J.E. Akin 81

object: A concept, or thing with crisp boundaries and meanings for the problem at hand; an instance of
aclass.

object diagram: A graphical representation of an object model showing relationships, attributes, and
operations.

object-oriented (O0): A software development strategy that organizes software as a collection of ob-
jects that contain both data structure and behavior. (Abbreviated OO.)

object-oriented programming (OOP): Object-oriented programs are object-based, class-based, sup-
port inheritance between classes and base classes and allow objects to send and receive messages.

object-oriented programming language: A language that supports objects (encapsulating identity,
data, and operations), method resolution, and inheritance.

octree: A tree structure where each node has eight child nodes.

OO (acronym): Obiject-oriented.

operand: An expression or variable that precedes or succeeds an operator.

operation: Manipulation of an object’s data by its member function when it receives a request.

operator overloading: A special case of polymorphism; attaching more than one meaning to the same
operator symbol. ‘Overloading’ is also sometimes used to indicate using the same name for differ-
ent objects.

overflow: An error condition arising from an attempt to store a number which is too large for the storage
location specified; typically caused by an attempt to divide by zero.

overloading: Using the same name for multiple functions or operators in a single scope.
overriding: The ability to change the definition of an inherited method or attribute in a subclass.

parameterized classes:A template for creating real classes that may differ in well-defined ways as
specified by parameters at the time of creation. The parameters are often data types or classes, but
may include other attributes, such as the size of a collection. (Also called generic classes.)

pass-by-reference:Method of passing an argument that permits the function to refer to the memory
holding the original copy of the argument

pass-by-value: Method of passing an argument that evaluates the argument and stores this value in the
corresponding formal argument, so the function has its own copy of the argument value

pointer: A single data object which stands for another (a “target”), which may be a compound object
such as an array, or defined type.

pointer array: An array which is declared with the pointer attribute. Its shape and size may not be
determined until they are created for the array by means of a memory allocation statement.

pointer assignment statement: A statement of the form “pointer-name target”.

polymorphism: The ability of an function/operator, with one name, to refer to arguments, or return
types, of different classes at run time.

post-condition: Specifies what must be true after the execution of an operation.
pre-condition: Specifies the condition(s) that must be true before an operation can be executed.

private: That part of an class, methods or attributes, which may not be accessed by other classes, only
by instances of that class.

©2001 J.E. Akin 82

protected: (Referring to an attribute or operation of a class in C++) accessible by methods of any de-
scendent of the current class.

prototype: A statement declaring a function’s return type, name, and list of argument types.

pseudocode:A language of structured English statements used in designing a step-by-step approach to
solving a problem.

public: That part of an object, methods or attributes, which may be accessed by other objects, and thus
constitutes its interface.

quadtree: A tree structure where each tree node has four child nodes.
guery operation: An operation that returns a value without modifying any objects.

rank: Number of subscripted variables an array has. A scalar has rank zero, a vector has rank one, a
matrix has rank two.

scope: That part of an executable program within which a lexical token (name) has a single interpreta-
tion.

section: Part of an array.

sequential: A kind of file in which each record is written (read) after the previously written (read) record.
server: An object that can only be operated upon by other objects.

service: A class member function encapsulated with its class data members.

shape: The rank of an array and the extent of each of its subscripts. Often stored in a rank-one array.
side effect: A change in a variable’s value as a result of using it as an operand, or argument.

signature: The combination of a subprogram’s (operator’'s) name and its argument (operand) types.
Does not include function result types.

size: The total number of elements in an array.

stack: Region of memory used for allocation of function data areas; allocation of variables on the stack
occurs automatically when a block is entered, and deallocation occurs when the block is exited

stride: The increment used in a subscript triplet.

strong typing: The property of a programming language such that the type of each variable must be
declared.

structure component: The part of a data object of derived type corresponding to a component of its
type.

sub-object: A portion of a data object that may be referenced or defined independently of other portions.
It may be an array element, an array section, a structure component, or a substring.

subprogram: A function or subroutine subprogram.

subprogram header: A block of code at the beginning of a subprogram definition; includes the name,
and the argument list, if any.

subscript triplet: A method of specifying an array section by means of the initial and final subscript
integer values and an optional stride (or increment).

super class: A class from which another class inherits. (See base class.)

©2001 J.E. Akin 83

supplier: Software component that implements a new class with services to be used by a client software
component.

target: The data object pointed to by a pointer, or reference variable.

template: An abstract recipe with parameters for producing concrete code for class definitions or sub-
program definitions.

thread: The basic entity to which the operating system allocates CPU time.

tree: A form of linked list in which each node points to at least two other nodes, thus defining a dynamic
data structure.

unary operator: An operator which has only one operand.
undefined: A data object which does not have a defined value.

underflow: An error condition where a number is too close to zero to be distinguished from zero in the
floating-point representation being used.

utility function: A private subprogram that can only be used within its defining class.
vector: A rank-one array. An array with one subscript.

vector subscript: A method of specifying an array section by means of a vector containing the subscripts
of the elements of the parent array that are to constitute the array section.

virtual function: A genetic function, with a specific return type, extended later for each new argument
type.

void subprogram: A C++ subprogram with an empty argument list and/or a subroutine with no returned
argument.

work array: A temporary array used for the storage of intermediate results during processing.

©2001 J.E. Akin 84

Appendix F

Subject Index

In the index the F90/95 intrinsic attributes, functions, subroutines, statements, etc. are shown in upper-
case letters even though Fortran is not case sensitive. The page numbers are cited with the chapter (or
appendix) number followed by a period, followed by the pages in that chapter separated by commas.
Topics that occur frequently are only cited at their first few uses.

©2001 J.E. Akin 0

A edit descriptor 4.34,35
ABS intrinsic 4.24 B.1
abstract data type 2.5,7
access restriction 1.23 2.5 3.1
ACCESS specifier
accessor A.l1
accuracy of real arithmetic
ACHAR intrinsic 4.33
ACTION specifier
actual argument
actual array argument
actual pointer argument
ADVANCE specifier 3.8 4.49,50
allocatable array 5.3
ALLOCATABLE attribute 5.3 B.12
ALLOCATE
statement 5.3 B.13
status 4.29,30 B.13
ALLOCATED intrinsic B.1
allocation statement B.4
allocation status
alphabetic sorting
alternate RETURN statement B.18
ampersand
analysis
AND. 3.17 4.16,17,48
angle class
APOSTROPHE
apostrophe edit descriptor
argument
actual
association
dummy
function 4.23
list
presence
subroutine 4.23
arguments 1.15
arithmetic expression
arithmetic IF statement
arithmetic operators 4.4
arithmetic unit
array
allocatable
allocation
assumed-shape
assumed-size 4.31
automatic 5.2,3 A.l1
bounds
conformable
constant
constructor 4.24 5.4,10,14 B.4
deferred-shape
dimensions B.4,7
dummy argument 5.3
element
explicit-shape
extent 5.1
extraction 5.9
flip 5.9
initialization 5.2,4,5
input
inquiry B.4
mask 5.10,11
name in an 1/O list
output
overflow A.1
packing B.4
pointer
rank 4.31,53
reduction B.5
reshape 5.13,14
shape 5.1
shifts 5.14
size 5.1
subscripts 5.2
unknown size 4.31
array element order
array of pointers
array processing intrinsics 5.6,7,11
array section
array specification
array variable
array-valued derived-type component

©2001 J.E. Akin

array-valued function 4.31
array-valued literal constant
ASCII

character 2.1 4.33,35

collating sequence 4.32
assembly language 1.18
ASSIGN statement B.16,17
assignment operator 1. 11 12
assignment statement Al B.17
ASSOCIATED intrinsic 4.45
assumed-length dummy argument
assumed-shape array
assumed-size array
asterisk

format specifier 2.3,4,5

default input unit

default output unit
attribute

ALLOCATABLE B.16

DIMENSION B.16

EXTERNAL

INTENT B.16
INTRINSIC

KIND B.16

object 1.22, 2.4, Al

OPTIONAL B.16
PARAMETER B.16

POINTER B.16
PRIVATE B.16
PUBLIC B.16
SAVE B.16
SEQUENCE
TARGET B.16

attributes 1.23
automatic array 4.48 5.3
automatic character length

B edit descriptor 4.36

back substitution

back-up B.

BACKSPACE statement 4.29 B.17
base class 7.1 A.2

behaviour 1.23

binary digit 4.29

binary file 5.5

binary number 4.36

binary operator 4.29

binary tree

bit intrinsic functions 4.29 B.5
blank character 4.33

BLANK specifier

BLOCK DATA statement B.16
block IF construct

block WHERE construct

BN edit descriptor

Boolean 2.1

bottom-up design 1.4

bounds

scalar B.5

upper
bubble sort 4.52
bug 1.8

BZ edit descriptor

C language 1.1
C++ language 1.1,11,15,21 2.2
4.4,5,8,9,10,14,17,19, 22
4, 23 27 29 35 38,39 40 41
4.45,47 5. 2 ,4,9,24,2
call by reference’ 31
call by value 4.31
CALL statement
CASE construct
CASE DEFAULT statement 4.17,18
case expression
case selector 4.17,18
CASE statement 4.17,18
character
argument
array
assignment
constant 3.8
control

data 1/0

expression

length

pointer 4.45

substring
character edit descriptor 3.8
character set

default 4.32

Fortran
CHARACTER statement 4.3 B.13
CHARACTER type 2.1 4.31
characteristics

dummy argument

result variable
chemical element 2.4,7
Circle class 3.2,4,19
class

base

defined

derived 4.38

hierarchies 3.2
classes 1.18,23 2.8 3.1
CLOSE statement 4.29
closing a file
CMPLX intrinsic 5.7
collating sequence
colon edit descriptor
colon operator 4.7,25 5.8
column extraction 5.9
comment

fixed source

free source

I statement
comments 1.1,6 4.1
COMMON block
COMMON block name
COMMON statement 4.27 B.16
comparing character strings 4.32
comparison of two real
compiler 1.19 3.6
COMPLEX statement 4.3 B.13,21
COMPLEX type 2.1, B.6
component

derived type 2.4
composition
computed GO TO B.16,21
concatenation

operator
condition

end-of-file 4.29

end-of-record 4.29

error
conditionals 1.6,7,14 4.13
conformable arrays
connectivity 5.12
constant

character

derived type

integer

literal

named

real)
constant expression
constructor

default 1.23

intrinsic 2.5 3.2

manual 2.8 3.7

structure
constructors 1.23 3.2
containers 8.1
CONTAINS statement 2.9 3.1 4.25,43
continuation 1.11 B.18
CONTINUE statement B.16
control characters 4.32,35
conversion constants
copies B.6
count-controlled DO 1.13 4.11
counting B.6
CPU time 4.28
curve-fitting 4.49,50
CYCLE

named 4.20

statement 4.9 B.13

D edit descriptor

©2001 J.E. Akin

data abstraction 1.23
data hiding 3.1
DATA statement B.16,19
data member 2.9
data structure
defining 4.39
initializing 4.39
interpretation 4.40
nested 4.38
data types 2.1
Date class 3.5
DEALLOCATE
statement 5.3 B.13
status 4.29
deallocation
debugging 1.19,20
decimal exponent range
decimal precision
default
accessibility
character set
constructor 1.23

input unit 5.5
kind 4.3
output unit 5.5
precision

private accessibility
public accessibility
deferred-shape array
defined operation 4.31
DELIM specifier B.16
delimiter
dereferencing 4.8
derived class 7.1
derived type
argument
component
constant
definition in a module
destructor 3.2
dimension
attribute
DIMENSION statement 4.25 B.19
direct access
READ statement
WRITE statement
DIRECT specifier B.16
DO

abort 4.10,20

construct 4.10

cycle

forever 4.10

loop 2.9

named 4.9,20

nested 4.19

termination

until 4.10,20

variable B.16
DO statement 2.9 4.9 B.13
DO WHILE statement 4.9,16,20 B.19
documentation 1.21
DOT_PRODUCT intrinsic 1.14

DOUBLE PRECISION attribute 2.1 4.

1
DOUBLE PRECISION statement B.16,17

double precision 2.3

doubly linked list 8.15

Drill class 6.1

dummy argument

dummy array argument 5.3
dummy pointer argument
dynamic binding

dynamic character 4.31
dynamic data structure
dynamically allocated array 5.3
dynamically allocated memory

E edit descriptor
edit descriptor

A 4.34,35
B 4.36
BN

Bz

D B.20

E B.20
EN

2

3
1

ES 3.4 B.20

F B.20

G B.20

| 4.36,38 B.20

L

(0] 4.36 B.20

P

S

SP

SS

T B.20

TL B.20

TR B.20

X B.20

Z 4.36 B.20

/ B.20
ELEMENTAL prefix
ELSE IF statement 49,16
ELSE statement 3.16 4.9

ELSE WHERE statement 4.9
embedded format
Employee class 7.5,9,12,15
EN edit descriptor
encapsulation 3.1
END DO statement 2.9
END FUNCTION statement
END IF statement 3.16 4.9
END INTERFACE statement 4.37
END MODULE statement 2.3
END PROGRAM statement 2.3 4.2
END SELECT statement
END statement
END SUBROUTINE statement
end-of-file condition 4.29
end-of-record condition 4.29
end-of-transmission 4.32
END= 4.30
ENDFILE statement 4.29 B.20
ENTRY statement B.13,20
EOSHIFT intrinsic 5.11,14
.EQ., see ==
equality of two reals
EQUIVALENCE statement B.16,20
EQV. 4.17
EM specifier
error

checking for

compilation

condition

execution

1/0

logical

semantic

syntactic
ES edit descriptor
exception 4.29,30
exception descriptor

IOSTAT 4.13,29

STAT 4.29 5.3
executable statement
execution error
existance B.7
EXISTS specifier 4.30
EXIT

named 4.20

statement 4.9,25
explicit

interface 4.31

loops 4.9
explicit-shape array
exponent range
exponential fit 4.50
exponential format
expression

arithmetic

constant

evaluation

in an output list

mixed-mode expression
expressions 1.12 4.1
extending an operator
extent 1
EXTERNAL attribute
external file 4.13,37,47

©2001 J.E. Akin

external procedure 4.47
EXTERNAL statement B.13

F edit descriptorB.20
Fibonacci number
ADT 2

class 2.8
file

access

connection

creation

disconnection

existence

external

inquiry

internal

position
FILE specifier
fill in B.7
fixed source form
floating-point numbers
flow control 1.13 4.1,9
FMT specifier
FORALL construct
FORM specifier
format

embedded

list-directed

user input
FORMAT statement 3.4 B.14
formatted file
formatted 1/0 statement
formatted record
FORMATTED specifier
Fortran Character Set
fraction 4.43,44
free source form
function

elemental

length

name

pure

reference

result

type

WIFt)h no arguments
function actual argument
function dummy argument
FUNCTION statement 2.9 4.22
functions 1.6,15 4.22

G edit descriptor
Game of Life 1.4,9,16,20 4.23,25
gather 5.12,14,15
Gaussian elimination
.GE., see >=
generic
defined operator
function 3.2,4
identifier
interface 3.4,7,15
interface block
name 4.31
operator
procedure 4.31
geometry module
global variables 1.16 4.27
Global Position class 6.7
GO TO statement 4.9,16,19 B.14
Great Arc class 6.7
greatest common divisor 3.16 4.49
.GT., see >

hash table

hexadecimal number 4.36
host association

host program unit

host scoping unit

| edit descriptor 4.36,38 B.20
IF
construct 3.16 4.14
named 4.18

nested 4.14
IF statement 3.5 4.15 B.14

3

IF ELSE 3.16 4.14 DEALLOCATE 5.3
imaginary part 4.8 DIGITS

implicit declaration 4.3 DOT_PRODUCT 1.14 5.6,7,11
implicit interface 4.25 EOSHIFT 5.11,14
implicit loop 4.13,24 5.5 EPSILON 5.7
IMPLICIT NONE statement 4.3,28 B.14 EXP 48 5.7
IMPLICIT statement 4.3 FLOAT
INCLUDE line 3.6 FLOOR 48 5.8
INDEX intrinsic 4.33,36 HUGE 4.7
index array IACHAR 4.33,35
index bounds IAND 4.29
infinite loop 4.10 IBCLR 4.29
information hiding 3.1 IBITS 4.29
inheritance 3.1,10 4.27 7.1 IBSET 4.29
initial statement ICHAR 4.33
initial value IEOR 4.29
initialization expression IMAG 4.8
input device INDEX 4.32
input editing INT 5.7,8
input list IOR 4.29
input record ISHFT 4.29
input statement ISHFTC 4.29
inquiry B.7 KIND 2.3
list-directed 4.13 LBOUND
input unit LEN 4.33,36
I/O statement LEN_TRIM 4.33
INQUIRE statement 4.30 B.14 LGE 4.33
inquire-by-file 4.30 LGT 4.33
inquire-by-output-list LLE 4.33
inquire-by-unit 4.30 LLT 4.33
instance LOG 48 5.7
INT intrinsic 5.7,8 LOG10 48 5.7
integer LOGICAL 2.1
argument MATXUL 5.5,6,7,11
constant MAXLOC 4.24 57,11
division MAXVAL 4.24 5.7,11
expression MERGE 5.11
kind MINLOC 4.24 57,11
literal constant MINVAL 424 57,11
numbers MOD 4.6,8
pointer 4.45 MODULO 3.16 4.8
INTEGER type 2.1,9 MVBITS 4.29
INTENT attribute 3.4 4.9,23 NINT 48 5.7,8
INTENT statement B.14 NOT 4.29
interface 1.2,32 3.2 4.30 NULL
INTERFACE ASSIGNMENT state- PACK 5.11
ment 3.16 4.44 PRESENT
B.14 PRODUCT 5.7,11
interface block 3.16 6.4 RANDOMNUMBER 5.7
interface body 4.31 RANDOMSEED 5.7
INTERFACE OPERATOR statement 3.16 4.44 REAL 5.7
5.12,13 B.14 REPEAT 4.33 5.11
INTERFACE statement 3.4 4.37 B.14 RESHAPE 5.4,7,11
internal file 4.35 SCAN 4.33
internal procedure 4.24,28 SELECTED_INT _KIND 2.1
internal variable SELECTED.REAL_KIND 2.1,3
INTRINSIC attribute B.22 SHAPE 5.7
intrinsic constructor 4.43 SIGN 424 57
intrinsic data type 4.4 SIN 1.13 4.8 5.7
intrinsic procedures and calls SINH 4.8 5.7
ABS 4.8,24 5.7 SIZE 4.23 5.7,13
ACHAR 4.33,35 SPREAD 5.11
ACOS 48 5.7 SQRT 46,8 5.7
ADJUSTL SUM 1.14 4.23 5.6,11
AIMAG 5.7 TAN 5.7
AINT 48 5.7,8 TANH 4.8 5.8
ALL 5.7,11 TINY 5.8
ALLOCATE 5.3 TRANSFER 4.29 5.11
ALLOCATED 5.3 TRANSPOSE 5.6,8,11
ANINT 5.7,8 TRIM 4.33
ANY 5.7,11 UBOUND
ASSOCIATED 4.45,46 UNPACK 5.11
ASIN 48 5.7 VERIFY 4.33
ATAN 48 5.7 WHERE 4.25
ATAN2 1.15 48 5.7 INTRINSIC statement B.14,22
BIT _SIZE 4.29 inverse of a matrix 4.48
BTEST 4.29 IOLENGTH specifier B.14
CEILING 48 5.7,8 IOSTAT specifier B.13
CHAR 4.32 iteration count
CMPLX 5.7 iterative methods
CONJG 48 5.7 iterator
COS 48 5.7
COSH 4.8 5.7
COUNT 5.7,11 keyword
CSHIFT 5.11,14 argument

©2001 J.E. Akin 4

KIND intrinsic 2.2,3
kind

default

inquiry

selector

type B.8,13
kind type parameter

of an expression

L edit descriptor
label 4.16
latitude 6.7
LBOUND intrinsic
.LE., see <=
leading blanks
least squares fit 4.49,52
LEN intrinsic 4.33
LEN_TRIM intrinsic 4.34
length
of a character argument
of a character variable 4.35
specification
lexical comparison intrinsic 4.33
LGE intrinsic 4.33
LGT intrinsic 4.33
library function 1.19
line
continuation 1.11 B.18
maximum length of
multiple statements on 4.48
linked list
circular
double 8.15
pointer 4.45,47
single 8.10
list-directed
data value termination on input
format specifier
formatting
input
output
PRINT statement
READ statement
literal constant
array-valued
LLE intrinsic 4.33
LLT intrinsic 4.33
local variable
location in an array B.8
logical
expression 1.13
function
literal constant
value
variable
logical IF statement
LOGICAL intrinsic
logical operator 4.17
LOGICAL statement B.14
LOGICAL type 2.1 4.17 B.8

longitude 6.7

loop
abort 4.19
cycle 4.19

counter 4.10,11
implied 412,24
indexed 1.13 4.11,48
infinite 4.10
named 4.9
nested 412,13
post-test 4.10,20
pre-test 4.10,20
variable 1.13

loops 1.6,7,13 4.12

loss of precision

lower bound

lower case letters 4.36

LT., see

main program

maintainability

Manager class 3.1 7.5,8,10,12,13,15
mantissa

many-one array section

masked array assignment

©2001 J.E. Akin

masks 4.13 5.10,12,25 B.1,2,3,9
massively parallel computer
mathematical constants 2.3
Matlab 4.4,5,7,8,9,10,12,14
4.22,23,27 5.2,4,5,6,7

5.9,9,24,25

matrix
addition 5.18,24
column 5.11,16
diagonal 5.17
factorization 5.21
inverse 5.12,20,24
multiplication 5.12,19,24
operations 5.12
partition 5.17
row 5.16
shifts 5.14
square 5.16
symmetric 5.17
transpose 5.12,17

mean 4.23

memory
allocation
deallocation
leak 8.9

message

mixed kind expressions
mixed-mode expression
model number

bit

integer

real
modular design 1.5,6
modular program development 1.2
module 1.18 2.3 3.1 4.27,28
module procedure
MODULE PROCEDURE state-

ment 3.4,16 5.12,13 7.1

MODULE statement 2.9 7 1 B.14
module variable 2.3 4.2
multiple inheritance 71

name length

NAME specifier

named
DO construct 4.9
IF construct 4.18

CASE construct

SELECT construct 4.18
named constant
NAMED specifier
NAMELIST statement B.16,22
.NE., see /=
negative iteration count
negative subscript value

QV. 4.17

nested
data structures 4.38
DO loops 4.13
IF blocks 4.14
implied loops 4.12
scoping unit

Newton-Raphson method 1.13,25
NEXTREC specifier
NML specifier B.23
node
non-advancing 1/0 3.18
non-advancing READ statement
non-counting DO loop
non-default

character

character set

complex number

integer

kin

logical

real
.NOT. 4.17,49
NULL 4.46
null character 4.33
NULLIFY statement 4.46 B.14,22
NUMBER specifier
number B.9
numerical sorting

O edit descriptor 4.36

object 3.1
object-oriented
analysis 1.21,23
design 1.21,24
languages 1.21,24
programming 1.1,21 31 6.1
obsolescent statements 2.1,2 B.17

octal number 4.36
ONLY qualifier 427 7.1 B.25
OPEN statement B.14,25
OPENED specifier 4.30
operator

definition 4.43

overloading 3.14 4.43
operators

arithmetic

binary

concatenation

unary
optional argument 2.9 3.7
OPTIONAL attribute 2.9 3.7 4.30,31
OPTIONAL statement B.14,22
.OR. 3.7 4.49
order of evaluation

effect of parentheses
output
output device
output editing
output format
output list

expression in
output statement

list-directed
overflow
overloading 3.14,16 4.43

P edit descriptor
PACK intrinsic procedure
PAD specifier B.16
padding 5.14
parallel computers 3.19
PARAMETER attribute 2.3
PARAMETER statement B.14,22
parameterized constants
parameterized data types
parameterized real variables
parameterized variables
parentheses to set order
pass by reference 4.7,31
pass by value 4.8,31
PAUSE statement B.16,22
peripheral device
Person class 3.6 4.47
physical constants
pointer
allocation
array
assignment 4.45
association status
component of derived type
deallocation
dummy argument
input and output

inquir B.10
Iinkedylist
nullification
return value 431
target 4.45
variable
POINTER attribute 4.31,45

POINTER statement B.14
pointer-valued function
polymorphism 3.1 7.1
POSITION specifier
post-condition

power law fit 4.50
precedence orders 4.5
precision 2.2
pre-condition 3.7 4.30
PRESENT intrinsic
PRINT statement
PRIVATE attribute
private components 2.6
prive members 2.6

©2001 J.E. Akin

PRIVATE qualifier
PRIVATE statement 29 B.14
procedure
argument
interface
intrinsic
libraries
size
PRODUCT intrinsic
Professor class 7.3
program
design 1.3,11
errors
name
structure
testing 1.18
PROGRAM statement 2.3 4.2 B.14
program unit
external routine
function
internal routine
main
module
subroutine
projectile 4.49
protoctf/pe 1.6,23 4.30
pseudocode 1.5,8,9,14,16 4.10
PUBLIC attribute
public attributes 2.6
public member
PUBLIC statement 29 B.14
PURE prefix

quadratic equation 1.8

random access
random number
range
range of a DO loop
rank
rational number
arithmetic 3.15
class 3.14
derived type 3.16
READ specifier
READ statement 2.4 4.12,29 B.14
read-only file
READWRITE specifier
real
argument
arithmetic operation
constant
DO variable
exponential literal constant
expression
literal constant
number
part (of a complex number)
variable
REAL intrinsic
REAL statement 2.3 B.14
REAL type 2.1
REC specifier B.16
RECL specifier B.16
Rectangle class 3.2,3,4,19
recursion
recursive
algorithms 4.49
bisection method
data structure
function B.15,21,24
procedure
process
reference
subroutine B.15,24,25
RECURSIVE qualifier 3.16 B.21,24
reduction B.11
relational expression
relational operator 4.4
rename modifier 7.1,4 B.25
renaming of module entities
repeat count
repeatable edit descriptor
repeated format
RESHAPE intrinsic

6

reshaping an array B.11

restricting access to module
restrictions on a logical IF
restrictions on a DO loop

result length

RESULT specification 2.9 3.4 B.13
result variable

return from a procedure

RETURN statement 4.9 B.15,16
returns 1.15

reverse order B.11

REWIND statement 4.29 B.15,24
root

roots of a quadratic equation
round-off error

row extraction 5.9

S edit descriptor
SAVE attribute
SAVE statement B.15,24
in a module 4.27
scalar
conformable with an array
scalar product of two vectors
scalar variable
scale factor
scatter 5.12,14

scope
scoping unit
scratch file

SELECT CASE statement 4.9,17,18 B.15
SELECTED.INT _KIND intrinsic
SELECTED.REAL_KIND intrinsic
semantic error
SEQUENCE attribute B.24
sequential access
sequential file
sequential 1/0 statement
SEQUENTIAL specifier
shape
side effects 8.9
SHAPE intrinsic procedure
shifts B.11
simultaneous linear equations
singly linked list 8.10
size
SIZE intrinsic 5.13
SIZE specifier
solution of linear equations
sorting, bubble
source form
fixed form
free form
SP edit descriptor
space character
SPACING intrinsic B.17
sparse matrix
Sparse Vector class
specification
specification expression
specification statement
specifier
ACCESS B.16
ACTION
ADVANCE B.16,23
APPEND B.16
ASIS B.16
BLANK B.16
DELIM B.16
DIRECT B.16
END B.16,22
EOR B.16
ERR B.13
EXIST B.21
FILE B.21
FMT B.14,16,23
FORM B.16
FORMATTED B.16
IOLENGTH B.14,21
IOSTAT B.13,16,21
NAME B.14,21
NAMED
NEXTREC
NEW B.16
NML B.23,25

©2001 J.E. Akin

NONE B.16
NULL B.16
NUMBER
OLD B.16
OPENED B.21
PAD B.16
POSITION B.16
QUOTE B.16
READ B.16
READWRITE B.16
REC B.16,23,25
RECL B.16
REPLACE B.16
REWIND B.16
SEARCH B.16
SEQUENTIAL B.16
SIZE B.16
STAT B.13
STATUS B.16
UNFORMATTED B.16
UNIT B.14,16
UNKNOWN B.16
WRITE B.16
ZERO B.16
SS edit descriptor
statement entity
statement function B.16
statement label 4.16
statement order
statements 1.1,2,11
STATUS specifier
STOP statement 3.7 4.9 5.3 B.15
storage unit
character
numeric
string 2.1
strong typing 4.3,28
structure
components 4.38
constructor 4.43
structured programming 1.15
Student class 3.7,11
subprograms 4.21
subprogram interface 3.16 4.31 6.4
subroutine
actual argument
arguments
call
dummy argument
interface
library
name
result
SUBROUTINE statement 2.9 4.22 B.15
subscript 2.9 5.1
subscript expression
subscript triplet 4.7 5.2,8
substring
SUM intrinsic 1.14
swap 9.1
syntactic error 1.1,19
SYSTEM.CLOCK call 4.28

tabs 4.50

T edit descriptor

target B.11

TARGET attribute 4.45
TARGET statement B.15
template 9.1

TL edit descriptor

top-down design

TR edit descriptor
TRANSPOSE intrinsic 5.4
TRIM intrinsic 4.33

trailing blanks

tree-structured data 4.45 8.1
truncation error

type conversion Intrinsic
TYPE declaration statement 249
type parameter

TYPE statement 2.49 B.15

UBOUND intrinsic

unary operator
undefined array

7

undefined pointer status
underflow
unformatted

file

I/O statements

record

UNFORMATTED specifier
unit number
unit specifier
until construct
upper bound
upper case letters 4.36
US Military Standard 4.29
USE association
USE statement 2.3 3.2,4,16 4.27

7.1 B.15

variable

character

declaration

initial value

internal

local

name 4.2
variables 1.12 4.1
Vector class 5.25 B.12
vector subscript 5.12

WHERE construct 5.10 B.25

WHERE statement 3.4 4.9 5.9 B.14,25
while loop 4.20,222

WRITE specifier 3.16 B.14

WRITE statement

X edit descriptor

Z edit descriptor
zero-sized array

! comment)
continuation marker
namelist data initiator

imBIied_ loop bounds
subscript bounds
(/ 1) array constructor 5.2
* ~ exponentiation 4.8
+ overloaded 3.16
; overloaded
edit descriptor
list-directed data terminator
namelist data terminator
value separator
5/ concatination 4.32
not equal
overloaded

edit descriptor
subscript triplet
n attribute terminator 2.3
; statement terminator

<
less than
overloaded

<:
less than or equal to
overloaded
assignment
overloaded 3.16
equal to
overloaded 3.16

>:
greater than or equal to
overloaded

=> rename option

>

greater than
overloaded

_ character in a name

©2001 J.E. Akin

Appendix G

Program Index

©2001 J.E. Akin

add _Rational 3.16

Add_to _Q 8.5,7,8

Angle _ 6.11,12,16

array _indexing 4.11

assign 4.44

Change 4.32

check _basis D.12

circle _area 3.4

class _Angle 6.12

class _Circle 3.4,19

class _Date 3.7,10,136.17
class _Drill 6.5

class _Employee 7.5,6,8,9,11,12 D.21
class _Fibonacci _Numbers 2.9
class _Global _Position 6.14
class _Great _Arc 6.15 D.21
class _Manager 7.8,9,10,11,12,14
class _Object 8.13,14,15
class _Person 3.9,10,12,13 6.17
class _Position _Angle 6.12 D.21
class _Professor 7.3

class _Queue 8.6

class _Rational 3.16,18
class _Rectangle 3.4,19
class _Sparse _Vector D.14
class _Stack 8.

class _Student 3.12,13
class _Vector D.7

clip 4.24

clip _an_array 4.24
compare _strings 4.34
Conversion _Constants D.3
convert 3.16

copy —Rational 3.16,18
create _a_type 2.

Create _Q 85,7,8

Date _ 3.7

Decimal _min 6.11,12
Decimal _sec 6.11,12,16
Default _Angle 6.11,12
define _structures 4.42
delete _Rational 3.16,18
derived _class _name 7.1
destroy _D_L_List 8.16
doubly _linked _list 8.16
Dril _ 6.3,45,6
D_L_insert _before 8.17,18
D_L_new 8.16,18

equal _Fraction 4.44

equal _integer 3.15

equal _to _Object 8.14
exception 4.30

exceptions 4.30

exception _status 4.30
Fibonacci 2.9

Fraction 4.44

Fractions 4.44

game_of _life 4.25

gcd 3.16 4.54

geometry 3.4

getEmployee 7.8,13

getName 7.9,12

getNameE 7.5,6,12
getNameM 7.8,9,13

getRate 7.5,12

get _Arc 6.10,15

Get _Capacity _of _Q 8.5,7,8
get _Denominator 3.16

Get _Front _of _Q 8.5,7,8
get _Latitude 6.10,14

Get _Length _of _Q 8.5,7,8
get _Longitude 6.10,14

get _mr_rate 6.3,5,6

get _Numerator 3.17

Get _Obj _at _Ptr 8.17,18
get _person 3.12,13

Get _Ptr _to _Obj 8.17,18
get _torque 6.3,5,6

Global _Position _ 6.10,14,16
Great _Arc _ 6.10,15,16
hello _world 4.2,53

in 6.45

inputCount 4.37 D.6

Int _deg 6.11,12,16

©2001 J.E. Akin

Int _deg _min 6.11,13,16
Int _deg _min _sec 6.11,13,16
invert 3.17,18

is _equal _to 3.17

Is _Q_Empty 8.5,7,8

Is _Q_Full 85,7,8

is _Stack _Empty 8.3,4
is _Stack _Full 8.3,4

is _S_L_emp 8.12,13
less _than _Object 8.14
linear _fit 4.51

list 3.17

list 4.44

List _Angle 6.11,12
List _Great _Arc 6.10,15
List _Positions 6.10,14,16
List _Position _Angle 6.11,13
List _Pt _to _Pt 6.10,15,16
logical _operators 4.17
Isq _fit 4.

make _Person 3.9,10,13
make _Professor 7.3
make _Rational 3.17
make_Rectangle 3.5
make_Stack 8.3,4

make _Student 3.12
Manager — 7.8,9,13
Math _constants 2.3
maximum 4.26

maxint 4.26

mean 4.23

mult _Fraction 4.43,44
mult _Rational 3.17,18
next _generation 4.25
No_Change 4.32

Object 8.4,13,14,18
Ops_example 5.13

out 6.4,5

passing _arguments 4.32
pay 7.9,10

payE 7.5,6,12

payM 7.8,9,13

Person _ 3.9,10
Physical _Constants D.4
pop —_from _Stack 8.3,4
print 7.3

PrintPay 7.11,12,14
PrintPayEmployee 7.11,12
PrintPayManager 7.11,13
print _Date 3.7

print _DOB 3.9

print _DOD 3.9

print _DOM 3.12

print _D_L_list 8.17,18
print _GPA 3.12,13
print _name 3.9,10,13
print _Nationality 3.9
print _sex 3.9

print _S_L_list 8.12,13
pt _expression 4.46
push _on _Stack 8.3,4
Rational _ 3.17,18
readData 4.37 D.6
read _Date 3.7

Read _Position _Angle 6.11,13
rectangle _area 3.4
reduce 3.17

relational _if 4.15
Remove_from _Q 8.5,7,8
setData 7.9,11

setDataE 7.5,6,12,14

setDataM 7.8,9,13,14
setSalaried 7.8,9,10,11,13,14
set _Date 3.7

set _DOB 3.9,10,13

set _DOD 3.9,10

set _DOM 3.12,13

set _Latitude 6.10,14

set _Lat _and _Long _at 6.10,14,16
set _Longitude 6.10,14

simple _arithmetic 4.6

simple _if _else 4.16

simple _loop 4.11

singly _linked _list 8.11

spy 4.25

2

string _to _integer 4.36
Student 3.12

swap _chemical _element 9.2
swap _integer 9.1

swap _library 9.2

swap _objects 9.1

S_L_delete 8.11,13
S_L_insert 8.12,13
S_L_new 8.12,13

test _Arc 6.16

test _Drill 6.6

test _D_L_L 8.18

test _matrix 4.48

test _Professor 7.4

test _Queue 8.8

test _Stack 8.4

test _S_L_L 8.13

test _Vector D.11

tic 4.28
tic _toc 4.28
toc 4.28

to _Decimal _Degrees 6.11,13,16
to _lower 4.36,37

to _Radians 6.11,13,16

to _upper 4.36,37 D.5

up —_down 4.37

watch D.5

©2001 J.E. Akin

	oop0.pdf
	oop1.pdf
	oop2.pdf
	oop3.pdf
	oop4.pdf
	oop5.pdf
	oop6.pdf
	oop7.pdf
	oop8.pdf
	oop9.pdf
	oop10.pdf
	oop11.pdf
	oop12.pdf
	oop13.pdf
	oop14.pdf
	oop15.pdf
	oop16.pdf

